Author
Listed:
- Kai Gong
- Yu Huang
- Xiao-long Chen
- Qing Li
- Ming Tang
Abstract
Many real infrastructure systems such as power grids and communication networks across cities not only depend on each other but also have community structures. This observation derives a new research subject of the interdependent community networks (ICNs). Recent works showed that the ICNs are extremely vulnerable to the failure of interconnected nodes between communities. Such vulnerability is prone to cause avalanche breakdown of the ICNs. How to improve the robustness of ICNs remains a challenge. In this paper, we propose a new target recovery strategy in the self-awareness recovery model, called recovery strategy based on community structures (RCS). The self-awareness recovery model repairs and reactivates the original pair of failed nodes that belong to mutual boundary of networks during cascading failures. The key insight is that the RCS explicitly considers both intercommunity links and intracommunity links. In this paper, we compare RCS with the state-of-the-art approaches based on randomness, degree centrality, and local centrality. We find that the RCS outperforms the other three strategies on the size of giant component, the existence probability of giant component, the number of iterative cascade steps, and the average degree of the remaining network. Moreover, RCS is robust against a given noise, and the optimal parameter of RCS remains stable even if the recovery ratio varies.
Suggested Citation
Kai Gong & Yu Huang & Xiao-long Chen & Qing Li & Ming Tang, 2020.
"The Target Recovery Strategy for Preventing Avalanche Breakdown on Interdependent Community Networks,"
Complexity, Hindawi, vol. 2020, pages 1-13, September.
Handle:
RePEc:hin:complx:1646930
DOI: 10.1155/2020/1646930
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1646930. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.