IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1640395.html
   My bibliography  Save this article

A Novel Control Strategy on Multiple-Mode Application of Electric Vehicle in Distributed Photovoltaic Systems

Author

Listed:
  • Qianwen Zhong
  • Yize Sun
  • Lele Peng

Abstract

Considering the booming development of electric vehicle (EV), this article presents a novel control scheme analyzing EV multiple-mode application in a number of distributed photovoltaic (PV) systems, which rationalizes the energy flow among the energy system participants containing a power grid, a grid-connected PV system, power consumption devices, storage batteries, and EV. Based on the control scheme, the authors propose two day-ahead optimal control strategies with different objective functions: one is minimizing the daily electricity expense of an individual distributed PV system and the other is minimizing the daily total expense of distributed PV systems which EV can be connected to. The model has been verified by the actual data and forecast data, respectively. The results show under the individual objective, in the distributed PV system with EV, the electricity expense can obtain an annual reduction of 27.18%. Furthermore, in the distributed PV system with a storage battery as well as EV, the electricity expense can obtain an annual reduction from 30.67% to 81.49% with a storage battery capacity changing from 1 kWh to 20 kWh. Under the total objective, the total expense and even the individual expense have different degrees of reduction. However, the specific benefits should be rerationally distributed by balancing the interests of all the distributed PV systems. In addition, besides the application in the distributed PV systems, this model may have some potential on the development of a regional energy system.

Suggested Citation

  • Qianwen Zhong & Yize Sun & Lele Peng, 2018. "A Novel Control Strategy on Multiple-Mode Application of Electric Vehicle in Distributed Photovoltaic Systems," Complexity, Hindawi, vol. 2018, pages 1-11, July.
  • Handle: RePEc:hin:complx:1640395
    DOI: 10.1155/2018/1640395
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/1640395.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/1640395.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/1640395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tostado-Véliz, Marcos & Kamel, Salah & Hasanien, Hany M. & Arévalo, Paul & Turky, Rania A. & Jurado, Francisco, 2022. "A stochastic-interval model for optimal scheduling of PV-assisted multi-mode charging stations," Energy, Elsevier, vol. 253(C).
    2. Helbert Eduardo Espitia & Iván Machón-González & Hilario López-García & Guzmán Díaz, 2019. "Proposal of an Adaptive Neurofuzzy System to Control Flow Power in Distributed Generation Systems," Complexity, Hindawi, vol. 2019, pages 1-16, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1640395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.