IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1572743.html
   My bibliography  Save this article

Turing Instability of Brusselator in the Reaction-Diffusion Network

Author

Listed:
  • Yansu Ji
  • Jianwei Shen

Abstract

Turing instability constitutes a universal paradigm for the spontaneous generation of spatially organized patterns, especially in a chemical reaction. In this paper, we investigated the pattern dynamics of Brusselator from the view of complex networks and considered the interaction between diffusion and reaction in the random network. After a detailed theoretical analysis, we obtained the approximate instability region about the diffusion coefficient and the connection probability of the random network. In the meantime, we also obtained the critical condition of Turing instability in the network-organized system and found that how the network connection probability and diffusion coefficient affect the reaction-diffusion system of the Brusselator model. In the end, the reason for arising of Turing instability in the Brusselator with the random network was explained. Numerical simulation verified the theoretical results.

Suggested Citation

  • Yansu Ji & Jianwei Shen, 2020. "Turing Instability of Brusselator in the Reaction-Diffusion Network," Complexity, Hindawi, vol. 2020, pages 1-12, October.
  • Handle: RePEc:hin:complx:1572743
    DOI: 10.1155/2020/1572743
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/1572743.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/1572743.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/1572743?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Qianqian & Shen, Jianwei & Pandey, Vikas & Guan, Linan & Guo, Yantao, 2023. "Turing instability in a network-organized epidemic model with delay," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Lei Shi & Jiaying Zhou & Yong Ye, 2023. "Pattern Formation in a Predator–Prey Model with Allee Effect and Hyperbolic Mortality on Multiplex Networks," Mathematics, MDPI, vol. 11(15), pages 1-15, July.
    3. Zheng, Qianqian & Shen, Jianwei & Xu, Yong & Pandey, Vikas & Guan, Linan, 2022. "Pattern mechanism in stochastic SIR networks with ER connectivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1572743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.