Author
Listed:
- Guobin Chen
- Xianzhong Xie
- Shijin Li
Abstract
Screening and classification of characteristic genes is a complex classification problem, and the characteristic sequences of gene expression show high-dimensional characteristics. How to select an effective gene screening algorithm is the main problem to be solved by analyzing gene chips. The combination of KNN, SVM, and SVM-RFE is selected to screen complex classification problems, and a new method to solve complex classification problems is provided. In the process of gene chip pretreatment, LogFC and value equivalents in the gene expression matrix are screened, and different gene features are screened, and then SVM-RFE algorithm is used to sort and screen genes. Firstly, the characteristics of gene chips are analyzed and the number between probes and genes is counted. Clustering analysis among each sample and PCA classification analysis of different samples are carried out. Secondly, the basic algorithms of SVM and KNN are tested, and the important indexes such as error rate and accuracy rate of the algorithms are tested to obtain the optimal parameters. Finally, the performance indexes of accuracy, precision, recall, and F1 of several complex classification algorithms are compared through the complex classification of SVM, KNN, KNN-PCA, SVM-PCA, SVM-RFE-SVM, and SVM-RFE-KNN at . SVM-RFE-SVM has the best classification effect and can be used as a gene chip classification algorithm to analyze the characteristics of genes.
Suggested Citation
Guobin Chen & Xianzhong Xie & Shijin Li, 2020.
"Research on Complex Classification Algorithm of Breast Cancer Chip Based on SVM-RFE Gene Feature Screening,"
Complexity, Hindawi, vol. 2020, pages 1-12, June.
Handle:
RePEc:hin:complx:1342874
DOI: 10.1155/2020/1342874
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1342874. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.