Author
Listed:
- Xiaofeng Li
- Yulong Bai
- Weishuan Pan
- Di Wang
- Yong-Jie Ma
- Rosa M. Lopez Gutierrez
Abstract
Fourth-order autonomous nonlinear differential equations can exhibit chaotic properties. In this study, we propose a family of fourth-order chaotic systems with infinite equilibrium points whose equilibria form closed curves of different shapes. First, the phase diagrams and Lyapunov exponents (LEs) of the system family are simulated. The results show that the system family has complex phase diagrams and dynamic behaviors. Simulation analysis of the Poincarè mapping and bifurcation diagrams shows that the system has chaotic characteristics. The circuit simulation model is constructed and simulated in Multisim. The circuit simulation results coincide with the numerical simulation results, which verifies the circuit feasibility of the system. Then, based on Lyapunov stability theory and the adaptive control method, the synchronous control of the system with infinite equilibria is designed. Numerical simulation results verify that the system synchronization with the adaptive control method is well. Finally, the synchronous drive system is used for image encryption, the response system is used for decryption, and color image encryption is realized by combining deoxyribonucleic acid (DNA) coding and operating rules. Therefore, this study not only enriched the research on infinite equilibria chaotic systems but also further expanded secure communication technology by combining chaotic synchronization control and DNA coding in image encryption.
Suggested Citation
Xiaofeng Li & Yulong Bai & Weishuan Pan & Di Wang & Yong-Jie Ma & Rosa M. Lopez Gutierrez, 2022.
"Development of a Family of Chaotic Systems with Infinite Equilibria and Its Application for Image Encryption,"
Complexity, Hindawi, vol. 2022, pages 1-18, March.
Handle:
RePEc:hin:complx:1250489
DOI: 10.1155/2022/1250489
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1250489. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.