Author
Listed:
- Åžerban Scrieciu
- Liz Varga
- Nici Zimmermann
- Zaid Chalabi
- Rachel Freeman
- Tom Dolan
- Dmitry E. Borisoglebsky
- Mike Davies
- Ana Teixeira de Melo
Abstract
Scientific modelling is a prime means to generate understanding and provide much-needed information to support public decision-making in the fluid area of sustainability. A growing, diverse sustainability modelling literature, however, does not readily lend itself to standard validation procedures, which are typically rooted in the positivist principles of empirical verification and predictive success. Yet, to be useful to decision-makers, models, including their outputs and the processes through which they are established must be, and must be seen to be “valid.†This study explores what model validity means in a problem space with increasingly interlinked and fast-moving challenges. We examine validation perspectives through ontological, epistemic, and methodological lenses, for a range of modelling approaches that can be considered as “complexity-compatible.†The worldview taken in complexity-compatible modelling departs from the more standard modelling assumptions of complete objectivity and full predictability. Drawing on different insights from complexity science, systems thinking, economics, and mathematics, we suggest a ten-dimensional framework for progressing on model validity when investigating sustainability concerns. As such, we develop a widened view of the meaning of model validity for sustainability. It includes (i) acknowledging that several facets of validation are critical for the successful modelling of the sustainability of complex systems; (ii) tackling the thorny issues of uncertainty, subjectivity, and unpredictability; (iii) exploring the realism of model assumptions and mechanisms; (iv) embracing the role of stakeholder engagement and scrutiny throughout the modelling process; and (v) considering model purpose when assessing model validity. We wish to widen the debate on the meaning of model validity in a constructive way. We conclude that consideration of all these elements is necessary to enable sustainability models to support, more effectively, decision-making for complex interdependent systems.
Suggested Citation
Åžerban Scrieciu & Liz Varga & Nici Zimmermann & Zaid Chalabi & Rachel Freeman & Tom Dolan & Dmitry E. Borisoglebsky & Mike Davies & Ana Teixeira de Melo, 2022.
"An Inquiry into Model Validity When Addressing Complex Sustainability Challenges,"
Complexity, Hindawi, vol. 2022, pages 1-17, September.
Handle:
RePEc:hin:complx:1193891
DOI: 10.1155/2022/1193891
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1193891. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.