IDEAS home Printed from https://ideas.repec.org/a/hde/epregl/v73y2022i3p349-370.html
   My bibliography  Save this article

Primjena Umjetnih Neuronskih Mreža U Modeliranju Domaće Turističke Potražnje

Author

Listed:
  • Tea Baldigara

    (Fakultet za menadžment u turizmu i ugostiteljstvu Opatija, Sveučilište u Rijeci)

Abstract

Rad istražuje učinkovitost primjene modela umjetnih neuronskih mreža u modeliranju domaće turističke potražnje u Republici Hrvatskoj, aproksimiranoj brojem dolazaka i brojem ostvarenih noćenja domaćih turista. Indeksi obujma industrijske proizvodnje, indeksi potrošačkih cijena, prosječna neto mjesečna plaća, broj zaposlenih te mjesečne sezonske dummy varijable odabrane su kao ulazne varijable. Za modeliranje empirijskih podataka korištene su mreže višeslojnog perceptrona. Prognostička moć modela evaluirana je prosječnom apsolutnom postotnom te prosječnom apsolutnom prognostičkom pogreškom, Pearsonovim koeficijentom korelacije te koeficijentom determinacije. Evaluacija dobivenih rezultata pokazala je kako su odabrani modeli višeslojnih perceptrona pouzdani za modeliranje domaće turističke potražnje, iako je istraživanje temeljeno na ograničenom, manjem broju podataka te broju ulaznih varijabli. Polazeći od rezultata, ali i ograničenja istraživanja, zaključuje se kako modeli umjetnih neuronskih mreža posjeduju značajne aplikativne potencijale u domeni modeliranja i prognoziranja vremenskih nizova broja dolazaka i noćenja domaćih turista u Republici Hrvatskoj.

Suggested Citation

  • Tea Baldigara, 2022. "Primjena Umjetnih Neuronskih Mreža U Modeliranju Domaće Turističke Potražnje," Ekonomski pregled, Hrvatsko društvo ekonomista (Croatian Society of Economists), vol. 73(3), pages 349-370.
  • Handle: RePEc:hde:epregl:v:73:y:2022:i:3:p:349-370
    DOI: 10.32910/ep.73.3.1
    as

    Download full text from publisher

    File URL: https://doi.org/10.32910/ep.73.3.1
    Download Restriction: no

    File URL: https://libkey.io/10.32910/ep.73.3.1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    domaća turistička potražnja; modeliranje; modeli umjetnih neuronskih mreža; model višeslojnog perceptrona;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hde:epregl:v:73:y:2022:i:3:p:349-370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Josip Tica (email available below). General contact details of provider: https://edirc.repec.org/data/hdeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.