IDEAS home Printed from https://ideas.repec.org/a/gam/jworld/v1y2020i3p16-226d438685.html
   My bibliography  Save this article

The All-You-Can-Eat Economy: How Never-Ending Economic Growth Affects Our Happiness and Our Chances for a Sustainable Future

Author

Listed:
  • Eric Wilson

    (Department of Civil Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada)

  • Phalguni Mukhopadhyaya

    (Department of Civil Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada)

Abstract

This paper explores the relationship between energy consumption, economic growth, and life satisfaction and makes the case that economic growth as usual is no longer a desirable or sustainable policy goal. Historically, economic and social development go along with energy sector transformation and total energy use. As a country develops, its use of energy increases, resource consumption increases, population booms, life expectancy rises, and overall socio-economic outcomes are improved. One might deduce then, that life satisfaction is also tightly correlated to economic development and energy consumption, but is this the case? To answer this question, current academic literature and data on the relationship between energy consumption, GDP, and quality of life were explored. The review showed a weak relationship between GDP and quality of life, a saturation relationship between energy use and social returns (social returns increase with increasing energy use to a point), and a strong relationship between GDP and energy use. There have been high hopes that improvements in energy-efficient technology will reduce global aggregate resource consumption, however, there is a growing body of research to suggest the opposite is likely to occur due to ”rebound effects”. The major environmental issues of our time have been seen predominantly as issues to be solved through advancements in technology; however, it is the argument of this paper that they cannot be addressed from a purely technological standpoint. Of course, improving energy efficiency is an important factor, but we must not forget the equally important subject of human behavior and our addiction to continual economic growth. We must first address the human desire to consume resources in the pursuit of happiness and socio-economic status, and shift towards a mentality of sufficiency. Future research must demonstrate concrete examples of sustainable development and consumption, advance the discourse on how the individual can be part of the solution, and empower the implementation of sustainable government policy.

Suggested Citation

  • Eric Wilson & Phalguni Mukhopadhyaya, 2020. "The All-You-Can-Eat Economy: How Never-Ending Economic Growth Affects Our Happiness and Our Chances for a Sustainable Future," World, MDPI, vol. 1(3), pages 1-11, November.
  • Handle: RePEc:gam:jworld:v:1:y:2020:i:3:p:16-226:d:438685
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-4060/1/3/16/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-4060/1/3/16/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    2. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    3. Max-Neef, Manfred, 1995. "Economic growth and quality of life: a threshold hypothesis," Ecological Economics, Elsevier, vol. 15(2), pages 115-118, November.
    4. Ayres, Robert U. & van den Bergh, Jeroen C.J.M. & Lindenberger, Dietmar & Warr, Benjamin, 2013. "The underestimated contribution of energy to economic growth," Structural Change and Economic Dynamics, Elsevier, vol. 27(C), pages 79-88.
    5. Allen, Robert C., 2009. "Engels' pause: Technical change, capital accumulation, and inequality in the british industrial revolution," Explorations in Economic History, Elsevier, vol. 46(4), pages 418-435, October.
    6. Jaume Freire-Gonz lez & Ignasi Puig-Ventosa, 2015. "Energy Efficiency Policies and the Jevons Paradox," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 69-79.
    7. Eric Hopkins, 1982. "Working Hours and Conditions during the Industrial Revolution: A Re-Appraisal," Economic History Review, Economic History Society, vol. 35(1), pages 52-66, February.
    8. Daniel W. O’Neill & Andrew L. Fanning & William F. Lamb & Julia K. Steinberger, 2018. "A good life for all within planetary boundaries," Nature Sustainability, Nature, vol. 1(2), pages 88-95, February.
    9. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenhao Qi & Wei Xu & Xiulin Qi & Meng Sun, 2023. "Can Environmental Protection Behavior Enhance Farmers' Subjective Well-Being?," Journal of Happiness Studies, Springer, vol. 24(2), pages 505-528, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
    2. Olatz Azurza-Zubizarreta & Izaro Basurko-PerezdeArenaza & Eñaut Zelarain & Estitxu Villamor & Ortzi Akizu-Gardoki & Unai Villena-Camarero & Alvaro Campos-Celador & Iñaki Barcena-Hinojal, 2021. "Urban Energy Transitions in Europe, towards Low-Socio-Environmental Impact Cities," Sustainability, MDPI, vol. 13(21), pages 1-29, October.
    3. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    4. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    5. Hametner, Markus, 2022. "Economics without ecology: How the SDGs fail to align socioeconomic development with environmental sustainability," Ecological Economics, Elsevier, vol. 199(C).
    6. Aldona Standar & Agnieszka Kozera & Łukasz Satoła, 2021. "The Importance of Local Investments Co-Financed by the European Union in the Field of Renewable Energy Sources in Rural Areas of Poland," Energies, MDPI, vol. 14(2), pages 1-23, January.
    7. Ahmann, Lara & Banning, Maximilian & Lutz, Christian, 2022. "Modeling rebound effects and counteracting policies for German industries," Ecological Economics, Elsevier, vol. 197(C).
    8. Virág, Doris & Wiedenhofer, Dominik & Baumgart, André & Matej, Sarah & Krausmann, Fridolin & Min, Jihoon & Rao, Narasimha D. & Haberl, Helmut, 2022. "How much infrastructure is required to support decent mobility for all? An exploratory assessment," Ecological Economics, Elsevier, vol. 200(C).
    9. Teixidó-Figueras, Jordi & Duro, Juan Antonio, 2015. "The building blocks of International Ecological Footprint inequality: A Regression-Based Decomposition," Ecological Economics, Elsevier, vol. 118(C), pages 30-39.
    10. Zeug, Walther & Bezama, Alberto & Thrän, Daniela, 2020. "Towards a holistic and integrated Life Cycle Sustainability Assessment of the bioeconomy: Background on concepts, visions and measurements," UFZ Discussion Papers 7/2020, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    11. Kristin Linnerud & Erling Holden & Morten Simonsen, 2021. "Closing the sustainable development gap: A global study of goal interactions," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 738-753, July.
    12. Grima, Nelson & Singh, Simron J., 2020. "The self-(in)sufficiency of the Caribbean: Ecosystem services potential Index (ESPI) as a measure for sustainability," Ecosystem Services, Elsevier, vol. 42(C).
    13. Farley, Joshua & Costanza, Robert & Flomenhoft, Gary & Kirk, Daniel, 2015. "The Vermont Common Assets Trust: An institution for sustainable, just and efficient resource allocation," Ecological Economics, Elsevier, vol. 109(C), pages 71-79.
    14. Cameron Allen & Graciela Metternicht & Thomas Wiedmann, 2021. "Priorities for science to support national implementation of the sustainable development goals: A review of progress and gaps," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 635-652, July.
    15. O'Neill, Daniel W., 2012. "Measuring progress in the degrowth transition to a steady state economy," Ecological Economics, Elsevier, vol. 84(C), pages 221-231.
    16. Farley, Joshua & Schmitt, Abdon & Burke, Matthew & Farr, Marigo, 2015. "Extending market allocation to ecosystem services: Moral and practical implications on a full and unequal planet," Ecological Economics, Elsevier, vol. 117(C), pages 244-252.
    17. Jackson, Tim, 2019. "The Post-growth Challenge: Secular Stagnation, Inequality and the Limits to Growth," Ecological Economics, Elsevier, vol. 156(C), pages 236-246.
    18. Stefano Di Bucchianico & Federica Cappelli, 2021. "Exploring the theoretical link between profitability and luxury emissions," Working Papers PKWP2114, Post Keynesian Economics Society (PKES).
    19. Syrovátka, Miroslav, 2020. "On sustainability interpretations of the Ecological Footprint," Ecological Economics, Elsevier, vol. 169(C).
    20. Tadashi Hirai, 2022. "A balancing act between economic growth and sustainable development: Historical trajectory through the lens of development indicators," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1900-1910, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jworld:v:1:y:2020:i:3:p:16-226:d:438685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.