IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i12p2094-d122106.html
   My bibliography  Save this article

Study on Environment Performance Evaluation and Regional Differences of Strictly-Environmental-Monitored Cities in China

Author

Listed:
  • Ji Guo

    (Collaborative Innovation Center on Climate and Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 10044, China
    School of Economics and Management, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Dongdong Zhu

    (School of Economics and Management, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Xianhua Wu

    (Collaborative Innovation Center on Climate and Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 10044, China
    School of Economics and Management, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Yaozhen Yan

    (School of Economics and Management, Nanjing University of Information Science & Technology, Nanjing 210044, China)

Abstract

With the rapid economic growth and development, the problem of environmental pollution in China’s cities is becoming increasingly serious, and environmental pollution takes on a regional difference. There is, however, little comprehensive evaluation on the environmental performance and the regional difference of strictly-environmental-monitored cities in China. In this paper, the environmental performance of 109 strictly-environmental-monitored cities in China is evaluated in terms of natural performance, management performance, and scale performance by Data Envelopment Analysis (DEA), incorporating PM 2.5 and PM 10 as undesirable outputs. The empirical results show that: (1) At present, the natural performance is quite high, while the management performance is noticeably low for most cities. (2) The gap between the level of economic development and environmental protection among cities in China is large, and the scale efficiency of big cities is better than that of smaller cities. The efficiency value of large-scale cities such as Beijing, Shanghai, Guangzhou, Shenzhen, etc. is high, equaling 1; the value of smaller cities such as Sanmenxia, Baoding, Mudanjiang, and Pingdingshan is low, close to 0, indicating that big cities are characterized by high environmental efficiency. (3) From the perspective of region, the level of environmental performance in China is very uneven. For example, the environmental efficiency level of the Pan-Pearl River Delta region is superior to that of the Pan-Yangtze River region and the Bahia Rim region, whose values of environmental efficiency are 0.858, 0.658, and 0.622 respectively. The average efficiency of the Southern Coastal Economic Zone, Eastern Coastal Comprehensive Economic Zone, and the Comprehensive Economic Zone in the middle reaches of the Yangtze River is higher than that of other regions. Finally, corresponding countermeasures and suggestions are put forward. The method used in this paper is applicable to the performance evaluation of cities, and the results of the evaluation reflect the differences of the environmental performance level between strictly-environmental-monitored cities and different regions in China, providing reference for the balanced environmental development of cities and regions.

Suggested Citation

  • Ji Guo & Dongdong Zhu & Xianhua Wu & Yaozhen Yan, 2017. "Study on Environment Performance Evaluation and Regional Differences of Strictly-Environmental-Monitored Cities in China," Sustainability, MDPI, vol. 9(12), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2094-:d:122106
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/12/2094/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/12/2094/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sueyoshi, Toshiyuki & Yuan, Yan, 2015. "China's regional sustainability and diversified resource allocation: DEA environmental assessment on economic development and air pollution," Energy Economics, Elsevier, vol. 49(C), pages 239-256.
    2. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," Omega, Elsevier, vol. 63(C), pages 48-59.
    3. Yin, Pengzhen & Sun, Jiasen & Chu, Junfei & Liang, Liang, 2016. "Evaluating the environmental efficiency of a two-stage system with undesired outputs by a DEA approach: An interest preference perspectiveAuthor-Name: Wu, Jie," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1047-1062.
    4. Lee, Taehwee & Yeo, Gi-Tae & Thai, Vinh V., 2014. "Environmental efficiency analysis of port cities: Slacks-based measure data envelopment analysis approach," Transport Policy, Elsevier, vol. 33(C), pages 82-88.
    5. Bian, Yiwen & He, Ping & Xu, Hao, 2013. "Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach," Energy Policy, Elsevier, vol. 63(C), pages 962-971.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ya Wang & Jiaofeng Pan & Ruimin Pei & Guoliang Yang & Bowen Yi, 2020. "A Framework for Assessing Green Capacity Utilization Considering CO 2 Emissions in China’s High-Tech Manufacturing Industry," Sustainability, MDPI, vol. 12(11), pages 1-25, May.
    2. Liang-han Ma & Jin-chi Hsieh & Yung-ho Chiu, 2019. "A Study on the Effects of Energy and Environmental Efficiency at China’s Provincial Level," Energies, MDPI, vol. 12(4), pages 1-13, February.
    3. Juan J. García-Machado & Minerva Martínez-Ávila, 2019. "Environmental Performance and Green Culture: The Mediating Effect of Green Innovation. An Application to the Automotive Industry," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    4. Zuoren Sun & Chao An & Huachen Sun, 2018. "Regional Differences in Energy and Environmental Performance: An Empirical Study of 283 Cities in China," Sustainability, MDPI, vol. 10(7), pages 1-28, July.
    5. Sheng, Jichuan & Qiu, Hong, 2018. "Governmentality within REDD+: Optimizing incentives and efforts to reduce emissions from deforestation and degradation," Land Use Policy, Elsevier, vol. 76(C), pages 611-622.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Yu, Anyu & Zhang, Puwei & Rudkin, Simon, 2022. "Simultaneous action or protection after production? Decision making based on a chance-constrained approach by measuring environmental performance considering PM2.5," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    3. Qiong Xia & Min Li & Huaqing Wu & Zhenggang Lu, 2016. "Does the Central Government’s Environmental Policy Work? Evidence from the Provincial-Level Environment Efficiency in China," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
    4. Toshiyuki Sueyoshi & Yan Yuan & Aijun Li & Daoping Wang, 2017. "Social Sustainability of Provinces in China: A Data Envelopment Analysis (DEA) Window Analysis under the Concepts of Natural and Managerial Disposability," Sustainability, MDPI, vol. 9(11), pages 1-18, November.
    5. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    6. Sheng-Hsiung Chiu & Tzu-Yu Lin & Hai-Lan Yang, 2020. "Measuring Energy Performance for Regional Sustainable Development in China: A New Framework based on a Dynamic Two-Stage SBM Approach," Sustainability, MDPI, vol. 12(7), pages 1-15, April.
    7. Amirteimoori, Alireza & Kazemi Matin, Reza & Yadollahi, Amir Hossein, 2024. "Stochastic resource reallocation in two-stage production processes with undesirable outputs: An empirical study on the power industry," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    8. Dongdong Ma & Guifang Li & Feng He, 2021. "Exploring PM2.5 Environmental Efficiency and Its Influencing Factors in China," IJERPH, MDPI, vol. 18(22), pages 1-15, November.
    9. Aizhen Zhang & Aijun Li & Yaping Gao, 2018. "Social Sustainability Assessment across Provinces in China: An Analysis of Combining Intermediate Approach with Data Envelopment Analysis (DEA) Window Analysis," Sustainability, MDPI, vol. 10(3), pages 1-24, March.
    10. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    11. Xie, Bai-Chen & Gao, Jie & Zhang, Shuang & Pang, Rui-Zhi & Zhang, ZhongXiang, 2018. "The environmental efficiency analysis of China’s power generation sector based on game cross-efficiency approach," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 126-135.
    12. Wang, Ke & Yang, Kexin & Wei, Yi-Ming & Zhang, Chi, 2018. "Shadow prices of direct and overall carbon emissions in China’s construction industry: A parametric directional distance function-based sensitive estimation," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 180-193.
    13. Zhang, Chonghui & Bai, Chen & Su, Weihua & Balezentis, Tomas, 2024. "The centralised data envelopment analysis model integrated with cost information and utility theory for power price setting under carbon peak strategy at the firm-level," Energy, Elsevier, vol. 292(C).
    14. Jiang, Yonglei & Liao, Feixiong & Xu, Qi & Yang, Zhongzhen, 2019. "Identification of technology spillover among airport alliance from the perspective of efficiency evaluation: The case of China," Transport Policy, Elsevier, vol. 80(C), pages 49-58.
    15. Chandra Prakash Garg & Vishal Kashav & Xuemuge Wang, 2023. "Evaluating sustainability factors of green ports in China under fuzzy environment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7795-7821, August.
    16. Bai-Chen Xie & Jie Gao & Shuang Zhang & ZhongXiang Zhang, 2017. "What Factors Affect the Competiveness of Power Generation Sector in China? An Analysis Based on Game Cross-efficiency," Working Papers 2017.12, Fondazione Eni Enrico Mattei.
    17. Tianqun Xu & Ping Gao & Qian Yu & Debin Fang, 2017. "An Improved Eco-Efficiency Analysis Framework Based on Slacks-Based Measure Method," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    18. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    19. Cristian Mardones, 2021. "Analysis on complementarity between a CO2 tax and an emissions trading system to reduce industrial emissions in Chile," Energy & Environment, , vol. 32(5), pages 820-833, August.
    20. Rongwu Zhang & Wenqiang Fu & Yingxu Kuang, 2022. "Can Digital Economy Promote Energy Conservation and Emission Reduction in Heavily Polluting Enterprises? Empirical Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2094-:d:122106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.