IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i9p881-d77235.html
   My bibliography  Save this article

A Comprehensive Real-Time Indoor Air-Quality Level Indicator

Author

Listed:
  • Jungho Kang

    (Department of Computer Science & Engineering, Soongsil University, Seoul 156-743, Korea)

  • Kwang-Il Hwang

    (Department of Embedded Systems Engineering, Incheon National University, Incheon 402-772, Korea)

Abstract

The growing concern about Indoor Air-Quality has accelerated the development of small, low-cost air-quality monitoring systems. These systems are capable of monitoring various indoor air pollutants in real time, notifying users about the current air-quality status and gathering the information to the central server. However, most Internet of Things (IoT)-based air-quality monitoring systems numerically present the sensed value per pollutant, making it difficult for general users to identify how polluted the air is. Therefore, in this paper, we first introduce a tiny air-quality monitoring system that we developed and, based on the system, we also test the applicability of the comprehensive Air-Quality Index (AQI), which is widely used all over the world, in terms of its capacity for a comprehensive indoor air-quality indication. We also develop design considerations for an IoT-based air-quality monitoring system and propose a real-time comprehensive indoor air-quality level indication method, which effectively copes with dynamic changes and is efficient in terms of processing and memory overhead.

Suggested Citation

  • Jungho Kang & Kwang-Il Hwang, 2016. "A Comprehensive Real-Time Indoor Air-Quality Level Indicator," Sustainability, MDPI, vol. 8(9), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:9:p:881-:d:77235
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/9/881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/9/881/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Mancini & Fabio Nardecchia & Daniele Groppi & Francesco Ruperto & Carlo Romeo, 2020. "Indoor Environmental Quality Analysis for Optimizing Energy Consumptions Varying Air Ventilation Rates," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    2. Joaquim Amândio Azevedo & Filipe Edgar Santos, 2021. "A More Efficient Technique to Power Home Monitoring Systems Using Controlled Battery Charging," Energies, MDPI, vol. 14(13), pages 1-16, June.
    3. Jong Hyuk Park & Han-Chieh Chao, 2017. "Advanced IT-Based Future Sustainable Computing," Sustainability, MDPI, vol. 9(5), pages 1-4, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:9:p:881-:d:77235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.