IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i6p534-d71470.html
   My bibliography  Save this article

The Multiscale Fluctuations of the Correlation between Oil Price and Wind Energy Stock

Author

Listed:
  • Shupei Huang

    (School of Humanities and Economic Management, China University of Geosciences, Beijing, China
    Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Land and Resources, Beijing 100083, China
    Open Lab of Talents Evaluation, Ministry of Land and Resources, Beijing 100083, China
    Department of Science and Technology, Parthenope University of Naples, Centro Direzionale-Isola C4, Napoli 80143, Italy)

  • Haizhong An

    (School of Humanities and Economic Management, China University of Geosciences, Beijing, China
    Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Land and Resources, Beijing 100083, China
    Open Lab of Talents Evaluation, Ministry of Land and Resources, Beijing 100083, China)

  • Xiangyun Gao

    (School of Humanities and Economic Management, China University of Geosciences, Beijing, China
    Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Land and Resources, Beijing 100083, China
    Open Lab of Talents Evaluation, Ministry of Land and Resources, Beijing 100083, China)

  • Meihui Jiang

    (School of Humanities and Economic Management, China University of Geosciences, Beijing, China
    Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Land and Resources, Beijing 100083, China
    Open Lab of Talents Evaluation, Ministry of Land and Resources, Beijing 100083, China)

Abstract

Wind energy is considered a clear and sustainable substitution for fossil fuel, and the stock index of the wind energy industry is closely related to the oil price fluctuation. Their relationship is characterized by multiscale and time-varying features based on a variety of stakeholders who have different objectives within various time horizons, which makes it difficult to identify the factor in which time scale could be the most influential one in the market. Aiming to explore the correlation between oil price and the wind energy stock index from the time–frequency domain in a dynamic perspective, we propose an algorithm combining the wavelet transform, complex network, and gray correlation analyses and choose the Brent oil price and the international securities exchange (ISE) global wind energy index from January 2006 to October 2015 in daily frequency as data sample. First, we define the multiscale conformation by a set of fluctuation information with different time horizons to represent the fluctuation status of the correlation of the oil–wind nexus rather than by a single original correlation value. Then, we transform the multiscale conformation evolution into a network model, and only 270 multiscale conformations and 710 transmissions could characterize 2451 data points. We find that only 30% of conformations and transmissions work as a backbone of the entire correlation series; through these major conformations, we identify that the main factor that could influence the oil–wind nexus are long-term components, such as policies, the status of the global economy and demand–supply issues. In addition, there is a clustering effect and transmissions among conformations that mainly happen inside clusters and rarely among clusters, which means the interaction of the oil–wind nexus is stable over a short period of time.

Suggested Citation

  • Shupei Huang & Haizhong An & Xiangyun Gao & Meihui Jiang, 2016. "The Multiscale Fluctuations of the Correlation between Oil Price and Wind Energy Stock," Sustainability, MDPI, vol. 8(6), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:6:p:534-:d:71470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/6/534/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/6/534/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lutz Kilian, 2016. "The Impact of the Shale Oil Revolution on U.S. Oil and Gasoline Prices," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(2), pages 185-205.
    2. Gallegati, Marco, 2008. "Wavelet analysis of stock returns and aggregate economic activity," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3061-3074, February.
    3. Jammazi, Rania, 2012. "Cross dynamics of oil-stock interactions: A redundant wavelet analysis," Energy, Elsevier, vol. 44(1), pages 750-777.
    4. Sadorsky, Perry, 2012. "Modeling renewable energy company risk," Energy Policy, Elsevier, vol. 40(C), pages 39-48.
    5. Vacha, Lukas & Barunik, Jozef, 2012. "Co-movement of energy commodities revisited: Evidence from wavelet coherence analysis," Energy Economics, Elsevier, vol. 34(1), pages 241-247.
    6. Huang, Shupei & An, Haizhong & Gao, Xiangyun & Huang, Xuan, 2015. "Identifying the multiscale impacts of crude oil price shocks on the stock market in China at the sector level," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 13-24.
    7. Gallegati, Marco, 2012. "A wavelet-based approach to test for financial market contagion," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3491-3497.
    8. Patrick M. Crowley, 2007. "A Guide To Wavelets For Economists," Journal of Economic Surveys, Wiley Blackwell, vol. 21(2), pages 207-267, April.
    9. Sadorsky, Perry, 2012. "Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies," Energy Economics, Elsevier, vol. 34(1), pages 248-255.
    10. Huang, Xuan & An, Haizhong & Gao, Xiangyun & Hao, Xiaoqing & Liu, Pengpeng, 2015. "Multiresolution transmission of the correlation modes between bivariate time series based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 493-506.
    11. Reboredo, Juan C., 2015. "Is there dependence and systemic risk between oil and renewable energy stock prices?," Energy Economics, Elsevier, vol. 48(C), pages 32-45.
    12. Jia, Xiaoliang & An, Haizhong & Fang, Wei & Sun, Xiaoqi & Huang, Xuan, 2015. "How do correlations of crude oil prices co-move? A grey correlation-based wavelet perspective," Energy Economics, Elsevier, vol. 49(C), pages 588-598.
    13. Gao, Zhong-Ke & Ding, Mei-Shuang & Geng, He & Jin, Ning-De, 2015. "Multivariate multiscale entropy analysis of horizontal oil–water two-phase flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 7-17.
    14. Wen, Xiaoqian & Guo, Yanfeng & Wei, Yu & Huang, Dengshi, 2014. "How do the stock prices of new energy and fossil fuel companies correlate? Evidence from China," Energy Economics, Elsevier, vol. 41(C), pages 63-75.
    15. Kumar, Surender & Managi, Shunsuke & Matsuda, Akimi, 2012. "Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis," Energy Economics, Elsevier, vol. 34(1), pages 215-226.
    16. Buonocore, Elvira & Vanoli, Laura & Carotenuto, Alberto & Ulgiati, Sergio, 2015. "Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plant in Italy," Energy, Elsevier, vol. 86(C), pages 476-487.
    17. Luís Aguiar-Conraria & Maria Joana Soares, 2014. "The Continuous Wavelet Transform: Moving Beyond Uni- And Bivariate Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 344-375, April.
    18. Henriques, Irene & Sadorsky, Perry, 2008. "Oil prices and the stock prices of alternative energy companies," Energy Economics, Elsevier, vol. 30(3), pages 998-1010, May.
    19. Reboredo, Juan C. & Rivera-Castro, Miguel A., 2014. "Wavelet-based evidence of the impact of oil prices on stock returns," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 145-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Shuyu & Huang, Shupei & Chi, Yuxi & Feng, Sida & Li, Yang & Sun, Qingru, 2020. "Three-level network analysis of the North American natural gas price: A multiscale perspective," International Review of Financial Analysis, Elsevier, vol. 67(C).
    2. Qi, Yajie & Li, Huajiao & Liu, Yanxin & Feng, Sida & Li, Yang & Guo, Sui, 2020. "Granger causality transmission mechanism of steel product prices under multiple scales—The industrial chain perspective," Resources Policy, Elsevier, vol. 67(C).
    3. Huang, Shupei & An, Haizhong & Huang, Xuan & Wang, Yue, 2018. "Do all sectors respond to oil price shocks simultaneously?," Applied Energy, Elsevier, vol. 227(C), pages 393-402.
    4. Liu, Xueyong & Jiang, Cheng, 2020. "The dynamic volatility transmission in the multiscale spillover network of the international stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    5. Sun, Qingru & Gao, Xiangyun & An, Haizhong & Guo, Sui & Liu, Xueyong & Wang, Ze, 2021. "Which time-frequency domain dominates spillover in the Chinese energy stock market?," International Review of Financial Analysis, Elsevier, vol. 73(C).
    6. Liu, Siyao & Fang, Wei & Gao, Xiangyun & Wang, Ze & An, Feng & Wen, Shaobo, 2020. "Self-similar behaviors in the crude oil market," Energy, Elsevier, vol. 211(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Shupei & An, Haizhong & Gao, Xiangyun & Wen, Shaobo & Jia, Xiaoliang, 2016. "The global interdependence among oil-equity nexuses," Energy, Elsevier, vol. 107(C), pages 259-271.
    2. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Ugolini, Andrea, 2017. "Wavelet-based test of co-movement and causality between oil and renewable energy stock prices," Energy Economics, Elsevier, vol. 61(C), pages 241-252.
    3. Huang, Shupei & An, Haizhong & Gao, Xiangyun & Wen, Shaobo & Hao, Xiaoqing, 2017. "The multiscale impact of exchange rates on the oil-stock nexus: Evidence from China and Russia," Applied Energy, Elsevier, vol. 194(C), pages 667-678.
    4. Huang, Shupei & An, Haizhong & Gao, Xiangyun & Sun, Xiaoqi, 2017. "Do oil price asymmetric effects on the stock market persist in multiple time horizons?," Applied Energy, Elsevier, vol. 185(P2), pages 1799-1808.
    5. Huang, Shupei & An, Haizhong & Huang, Xuan & Wang, Yue, 2018. "Do all sectors respond to oil price shocks simultaneously?," Applied Energy, Elsevier, vol. 227(C), pages 393-402.
    6. Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of energy prices on clean energy stock prices. A multivariate quantile dependence approach," Energy Economics, Elsevier, vol. 76(C), pages 136-152.
    7. Huang, Shupei & An, Haizhong & Huang, Xuan & Jia, Xiaoliang, 2018. "Co-movement of coherence between oil prices and the stock market from the joint time-frequency perspective," Applied Energy, Elsevier, vol. 221(C), pages 122-130.
    8. Polanco Martínez, Josué M. & Abadie, Luis M. & Fernández-Macho, J., 2018. "A multi-resolution and multivariate analysis of the dynamic relationships between crude oil and petroleum-product prices," Applied Energy, Elsevier, vol. 228(C), pages 1550-1560.
    9. Reboredo, Juan C., 2018. "Green bond and financial markets: Co-movement, diversification and price spillover effects," Energy Economics, Elsevier, vol. 74(C), pages 38-50.
    10. Huang, Shupei & An, Haizhong & Gao, Xiangyun & Hao, Xiaoqing, 2016. "Unveiling heterogeneities of relations between the entire oil–stock interaction and its components across time scales," Energy Economics, Elsevier, vol. 59(C), pages 70-80.
    11. Jiang, Yonghong & Wang, Jieru & Ao, Zhiming & Wang, Yujou, 2022. "The relationship between green bonds and conventional financial markets: Evidence from quantile-on-quantile and quantile coherence approaches," Economic Modelling, Elsevier, vol. 116(C).
    12. Huang, Shupei & An, Haizhong & Gao, Xiangyun & Huang, Xuan, 2016. "Time–frequency featured co-movement between the stock and prices of crude oil and gold," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 985-995.
    13. Dutta, Anupam, 2018. "Oil and energy sector stock markets: An analysis of implied volatility indexes," Journal of Multinational Financial Management, Elsevier, vol. 44(C), pages 61-68.
    14. Reboredo, Juan C. & Ugolini, Andrea, 2020. "Price connectedness between green bond and financial markets," Economic Modelling, Elsevier, vol. 88(C), pages 25-38.
    15. Reboredo, Juan C., 2015. "Is there dependence and systemic risk between oil and renewable energy stock prices?," Energy Economics, Elsevier, vol. 48(C), pages 32-45.
    16. Kocaarslan, Baris & Soytas, Ugur, 2021. "Reserve currency and the volatility of clean energy stocks: The role of uncertainty," Energy Economics, Elsevier, vol. 104(C).
    17. Yufeng Chen & Wenqi Li & Xi Jin, 2018. "Volatility Spillovers between Crude Oil Prices and New Energy Stock Price in China," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 43-62, December.
    18. Juan C. Reboredo & Andrea Ugolini & Yifei Chen, 2019. "Interdependence Between Renewable-Energy and Low-Carbon Stock Prices," Energies, MDPI, vol. 12(23), pages 1-14, November.
    19. Fernanda Fuentes & Rodrigo Herrera, 2020. "Dynamics of Connectedness in Clean Energy Stocks," Energies, MDPI, vol. 13(14), pages 1-19, July.
    20. Jiang, Yonghong & Wang, Jieru & Lie, Jiayi & Mo, Bin, 2021. "Dynamic dependence nexus and causality of the renewable energy stock markets on the fossil energy markets," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:6:p:534-:d:71470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.