IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i6p521-d71028.html
   My bibliography  Save this article

A Simulation Study on the Urban Population of China Based on Nighttime Light Data Acquired from DMSP/OLS

Author

Listed:
  • Qingxu Huang

    (Center for Human-Environment System Sustainability, State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China)

  • Yang Yang

    (Teaching and Research Section of Land Resources Management, Department of Public Administration, Law & Politics School, Ocean University of China, 238 Songling Road, Qingdao 266100, China)

  • Yajing Li

    (Teaching and Research Section of Land Resources Management, Department of Public Administration, Law & Politics School, Ocean University of China, 238 Songling Road, Qingdao 266100, China)

  • Bin Gao

    (Center for Human-Environment System Sustainability, State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
    College of Resources Science & Technology, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China)

Abstract

The urban population (UP) measure is one of the most direct indicators that reflect the urbanization process and the impacts of human activities. The dynamics of UP is of great importance to studying urban economic, social development, and resource utilization. Currently, China lacks long time series UP data with consistent standards and comparability over time. The nighttime light images from the Defense Meteorological Satellite Program’s (DMSP) Operational Linescan System (OLS) allow the acquisition of continuous and highly comparable long time series UP information. However, existing studies mainly focus on simulating the total population or population density level based on the nighttime light data. Few studies have focused on simulating the UP in China. Based on three regression models ( i.e. , linear, power function, and exponential), the present study discusses the relationship between DMSP/OLS nighttime light data and the UP and establishes optimal regression models for simulating the UPs of 339 major cities in China from 1990 to 2010. In addition, the present study evaluated the accuracy of UP and non-agricultural population (NAP) simulations conducted using the same method. The simulation results show that, at the national level, the power function model is the optimal regression model between DMSP/OLS nighttime light data and UP data for 1990–2010. At the provincial scale, the optimal regression model varies among different provinces. The linear regression model is the optimal regression model for more than 60% of the provinces. In addition, the comparison results show that at the national, provincial, and city levels, the fitting results of the UP based on DMSP/OLS nighttime light data are better than those of the NAP. Therefore, DMSP/OLS nighttime light data can be used to effectively retrieve the UP of a large-scale region. In the context of frequent population flows between urban and rural areas in China and difficulty in obtaining accurate UP data, this study provides a timely and effective method for solving this problem.

Suggested Citation

  • Qingxu Huang & Yang Yang & Yajing Li & Bin Gao, 2016. "A Simulation Study on the Urban Population of China Based on Nighttime Light Data Acquired from DMSP/OLS," Sustainability, MDPI, vol. 8(6), pages 1-13, May.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:6:p:521-:d:71028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/6/521/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/6/521/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Kevin Honglin & Song, Shunfeng, 2003. "Rural-urban migration and urbanization in China: Evidence from time-series and cross-section analyses," China Economic Review, Elsevier, vol. 14(4), pages 386-400.
    2. Qin, Bo & Zhang, Yu, 2014. "Note on urbanization in China: Urban definitions and census data," China Economic Review, Elsevier, vol. 30(C), pages 495-502.
    3. Tilottama Ghosh & Sharolyn J. Anderson & Christopher D. Elvidge & Paul C. Sutton, 2013. "Using Nighttime Satellite Imagery as a Proxy Measure of Human Well-Being," Sustainability, MDPI, vol. 5(12), pages 1-32, November.
    4. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    5. Doll, Christopher N.H. & Muller, Jan-Peter & Morley, Jeremy G., 2006. "Mapping regional economic activity from night-time light satellite imagery," Ecological Economics, Elsevier, vol. 57(1), pages 75-92, April.
    6. Christopher D. Elvidge & Daniel Ziskin & Kimberly E. Baugh & Benjamin T. Tuttle & Tilottama Ghosh & Dee W. Pack & Edward H. Erwin & Mikhail Zhizhin, 2009. "A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data," Energies, MDPI, vol. 2(3), pages 1-28, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nannan Gao & Fen Li & Hui Zeng & Daniël van Bilsen & Martin De Jong, 2019. "Can More Accurate Night-Time Remote Sensing Data Simulate a More Detailed Population Distribution?," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    2. Feng Lan & Huili Da & Haizhen Wen & Ying Wang, 2019. "Spatial Structure Evolution of Urban Agglomerations and Its Driving Factors in Mainland China: From the Monocentric to the Polycentric Dimension," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
    3. Hoyong Kim & Donghyun Kim, 2022. "Changes in Urban Growth Patterns in Busan Metropolitan City, Korea: Population and Urbanized Areas," Land, MDPI, vol. 11(8), pages 1-18, August.
    4. Jingtao Wang & Haibin Liu & Di Peng & Qian Lv & Yu Sun & Hui Huang & Hao Liu, 2021. "The County-Scale Economic Spatial Pattern and Influencing Factors of Seven Urban Agglomerations in the Yellow River Basin—A Study Based on the Integrated Nighttime Light Data," Sustainability, MDPI, vol. 13(8), pages 1-22, April.
    5. Yue Li & Chengmeng Zhang & Yan Tong & Yalu Zhang & Gong Chen, 2022. "Prediction of the Old-Age Dependency Ratio in Chinese Cities Using DMSP/OLS Nighttime Light Data," IJERPH, MDPI, vol. 19(12), pages 1-23, June.
    6. Jie Liu & Qingshan Yang & Jian Liu & Yu Zhang & Xiaojun Jiang & Yangmeina Yang, 2020. "Study on the Spatial Differentiation of the Populations on Both Sides of the “Qinling-Huaihe Line” in China," Sustainability, MDPI, vol. 12(11), pages 1-25, June.
    7. Yang Zhong & Aiwen Lin & Zhigao Zhou, 2019. "Evolution of the Pattern of Spatial Expansion of Urban Land Use in the Poyang Lake Ecological Economic Zone," IJERPH, MDPI, vol. 16(1), pages 1-14, January.
    8. Ge Shi & Nan Jiang & Yang Li & Bin He, 2018. "Analysis of the Dynamic Urban Expansion Based on Multi-Sourced Data from 1998 to 2013: A Case Study of Jiangsu Province," Sustainability, MDPI, vol. 10(10), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boslett, Andrew & Hill, Elaine & Ma, Lala & Zhang, Lujia, 2021. "Rural light pollution from shale gas development and associated sleep and subjective well-being," Resource and Energy Economics, Elsevier, vol. 64(C).
    2. Natalya Rybnikova & Boris Portnov, 2015. "Using light-at-night (LAN) satellite data for identifying clusters of economic activities in Europe," Letters in Spatial and Resource Sciences, Springer, vol. 8(3), pages 307-334, November.
    3. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    4. Felbermayr, Gabriel & Gröschl, Jasmin & Sanders, Mark & Schippers, Vincent & Steinwachs, Thomas, 2018. "Shedding Light on the Spatial Diffusion of Disasters," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181556, Verein für Socialpolitik / German Economic Association.
    5. Zhaoxin Dai & Yunfeng Hu & Guanhua Zhao, 2017. "The Suitability of Different Nighttime Light Data for GDP Estimation at Different Spatial Scales and Regional Levels," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    6. Jasiński, Tomasz, 2019. "Modeling electricity consumption using nighttime light images and artificial neural networks," Energy, Elsevier, vol. 179(C), pages 831-842.
    7. Jaqueson K. Galimberti, 2020. "Forecasting GDP Growth from Outer Space," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(4), pages 697-722, August.
    8. Juan Jose Miranda & Oscar A. Ishizawa & Hongrui Zhang, 2020. "Understanding the Impact Dynamics of Windstorms on Short-Term Economic Activity from Night Lights in Central America," Economics of Disasters and Climate Change, Springer, vol. 4(3), pages 657-698, October.
    9. Wenjun Jiao & Anthony M. Fuller & Siyuan Xu & Qingwen Min & Minfang Wu, 2016. "Socio-Ecological Adaptation of Agricultural Heritage Systems in Modern China: Three Cases in Qingtian County, Zhejiang Province," Sustainability, MDPI, vol. 8(12), pages 1-16, December.
    10. Ziyang Cao & Zhifeng Wu & Yaoqiu Kuang & Ningsheng Huang & Meng Wang, 2016. "Coupling an Intercalibration of Radiance-Calibrated Nighttime Light Images and Land Use/Cover Data for Modeling and Analyzing the Distribution of GDP in Guangdong, China," Sustainability, MDPI, vol. 8(2), pages 1-18, January.
    11. Yongming Xu & Yaping Mo & Shanyou Zhu, 2021. "Poverty Mapping in the Dian-Gui-Qian Contiguous Extremely Poor Area of Southwest China Based on Multi-Source Geospatial Data," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    12. Shengnan Jiang & Guoen Wei & Zhenke Zhang & Yue Wang & Minghui Xu & Qing Wang & Priyanko Das & Binglin Liu, 2020. "Detecting the Dynamics of Urban Growth in Africa Using DMSP/OLS Nighttime Light Data," Land, MDPI, vol. 10(1), pages 1-19, December.
    13. Nguyen, Cuong & Noy, Ilan, 2018. "Measuring the impact of insurance on urban recovery with light: The 2011 New Zealand earthquake," Working Paper Series 6955, Victoria University of Wellington, School of Economics and Finance.
    14. Addison,Douglas M. & Stewart,Benjamin P., 2015. "Nighttime lights revisited : the use of nighttime lights data as a proxy for economic variables," Policy Research Working Paper Series 7496, The World Bank.
    15. Ilari Määttä & Thomas Ferreira & Christian Leßmann, 2022. "Nighttime lights and wealth in very small areas: [Nachtlichter und Wohlstand in Kleinräumigen Daten:]," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 42(2), pages 161-190, August.
    16. Shapiro, Daniel & Oh, Chang Hoon & Zhang, Peng, 2023. "Nighttime lights data and their implications for IB research," Journal of International Management, Elsevier, vol. 29(5).
    17. Kiyoyasu Tanaka & Souknilanh Keola, 2017. "Shedding Light on the Shadow Economy: A Nighttime Light Approach," Journal of Development Studies, Taylor & Francis Journals, vol. 53(1), pages 32-48, January.
    18. Basihos, Seda, 2016. "Nightlights as a Development Indicator: The Estimation of Gross Provincial Product (GPP) in Turkey," MPRA Paper 75553, University Library of Munich, Germany, revised 09 Sep 2016.
    19. Lionel Roger, 2018. "Blinded by the light? Heterogeneity in the luminosity-growth nexus and the African growth miracle," Discussion Papers 2018-04, University of Nottingham, CREDIT.
    20. Felbermayr, Gabriel & Gröschl, Jasmin & Sanders, Mark & Schippers, Vincent & Steinwachs, Thomas, 2022. "The economic impact of weather anomalies," World Development, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:6:p:521-:d:71028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.