IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i11p1180-d82979.html
   My bibliography  Save this article

Characterizing and Assessing the Agricultural Land Use Intensity of the Beijing Mountainous Region

Author

Listed:
  • Weiwei Zhang

    (Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shu Guang Hua Yuan Middle Road, Beijing 100097, China)

  • Hong Li

    (Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shu Guang Hua Yuan Middle Road, Beijing 100097, China)

Abstract

Recently, land use and land cover change have received increased attention, and an approach is required that can assess agricultural land use intensity on a general basis. This study demonstrated the usefulness of a tool for characterizing and assessing agricultural land use intensity in Beijing mountainous region. An emergy analysis and principal component analysis (PCA) were adopted to obtain agricultural input and output intensity data. Correlation and regression analyses were used to study the relationship among land capability, agricultural input, output intensity, and agricultural system sustainability. Ultimately, the agricultural land use intensity types in the Beijing mountainous region were identified through a cluster analysis. The results produced five indices of agricultural input intensity and five indices of output intensity. Non-renewable energy was the overwhelming input, and grain, meat, eggs, and vegetables were the major outputs of the agricultural system. The results also showed that there was better natural land quality, higher input intensity, greater output intensity, and lower agricultural system sustainability. Eight types of agricultural intensity were classified and assessed, and they may be used to evaluate and monitor sustainable land use and provide baseline measurements of land use intensity for land use analyses and change detection.

Suggested Citation

  • Weiwei Zhang & Hong Li, 2016. "Characterizing and Assessing the Agricultural Land Use Intensity of the Beijing Mountainous Region," Sustainability, MDPI, vol. 8(11), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:11:p:1180-:d:82979
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/11/1180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/11/1180/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Libang Ma & Wenjuan Cheng & Jie Bo & Xiaoyang Li & Yuan Gu, 2018. "Spatio-Temporal Variation of Land-Use Intensity from a Multi-Perspective—Taking the Middle and Lower Reaches of Shule River Basin in China as an Example," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    2. Vinay Prasad Mandal & Raihan Ahmad & Sufia Rehman & Md Masroor & Haroon Sajjad, 2019. "Exploring optimal cereal crop sequence using cultivated land utilization index and yield in Katihar district, India: a sub division level analysis," Asian Journal of Agriculture and rural Development, Asian Economic and Social Society, vol. 9(1), pages 62-81, June.
    3. Li Yu & Zhanqi Wang & Hongwei Zhang & Chao Wei, 2020. "Spatial-Temporal Differentiation Analysis of Agricultural Land Use Intensity and Its Driving Factors at the County Scale: A Case Study in Hubei Province, China," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    4. Guo, Xiao-Xia & Li, Ke-Li & Liu, Yi-Ze & Zhuang, Ming-Hao & Wang, Chong, 2022. "Toward the economic-environmental sustainability of smallholder farming systems through judicious management strategies and optimized planting structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. You, Heyuan & Hu, Xiaowei & Wu, Yizhou, 2018. "Farmland use intensity changes in response to rural transition in Zhejiang province, China," Land Use Policy, Elsevier, vol. 79(C), pages 350-361.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:11:p:1180-:d:82979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.