IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i10p1081-d81243.html
   My bibliography  Save this article

Dynamic Group Management Scheme for Sustainable and Secure Information Sensing in IoT

Author

Listed:
  • Hyungjoo Kim

    (Convergence Laboratory, Korea Telecom Research & Development Center, 151 Taebong-ro, Seocho-gu, Seoul 06763, Korea)

  • Jungho Kang

    (Department of Computer Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea)

Abstract

The services provided to users in the environment associated with the Internet of Things (hereinafter referred to as IoT) begin with the information collected from sensors. It is imperative to transmit high-quality sensor data for providing better services. It is also required to collect data only from those authenticated sensors. Moreover, it is imperative to collect high-quality data on a sustainable and continuous basis in order to provide services anytime and anywhere in the IoT environment. Therefore, high-quality, authenticated sensor networks should be constructed. The most prominent routing protocol to enhance the energy consumption efficiency for the sustainable data collection in a sensor network is the LEACH routing protocol. The LEACH routing protocol transmits sensor data by measuring the energy of sensors and allocating sensor groups dynamically. However, these sensor networks have vulnerabilities such as key leakage, eavesdropping, replay attack and relay attack, given the nature of wireless network communication. A large number of security techniques have been studied in order to solve these vulnerabilities. Nonetheless, these studies still cannot support the dynamic sensor group allocation of the LEACH routing protocol. Furthermore, they are not suitable for the sensor nodes whose hardware computing ability and energy resources are limited. Therefore, this paper proposed a group sensor communication protocol that utilizes only the four fundamental arithmetic operations and logical operation for the sensor node authentication and secure data transmission. Through the security analysis, this paper verified that the proposed scheme was secure to the vulnerabilities resulting from the nature of wireless network communication. Moreover, this paper verified through the performance analysis that the proposed scheme could be utilized efficiently.

Suggested Citation

  • Hyungjoo Kim & Jungho Kang, 2016. "Dynamic Group Management Scheme for Sustainable and Secure Information Sensing in IoT," Sustainability, MDPI, vol. 8(10), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:10:p:1081-:d:81243
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/10/1081/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/10/1081/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro Valencia-Arias & Juana Ramírez Dávila & Wilmer Londoño-Celis & Lucia Palacios-Moya & Julio Leyrer Hernández & Erica Agudelo-Ceballos & Hernán Uribe-Bedoya, 2024. "Research Trends in the Use of the Internet of Things in Sustainability Practices: A Systematic Review," Sustainability, MDPI, vol. 16(7), pages 1-23, March.
    2. Rong Xie & Muyan Chen & Weihuang Liu & Hongfei Jian & Yanjun Shi, 2021. "Digital Twin Technologies for Turbomachinery in a Life Cycle Perspective: A Review," Sustainability, MDPI, vol. 13(5), pages 1-22, February.
    3. Miguel Gómez-Chaparro & Justo García-Sanz-Calcedo & Luis Armenta Márquez, 2018. "Analytical Determination of Medical Gases Consumption and Their Impact on Hospital Sustainability," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    4. Jong Hyuk Park & Han-Chieh Chao, 2017. "Advanced IT-Based Future Sustainable Computing," Sustainability, MDPI, vol. 9(5), pages 1-4, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:10:p:1081-:d:81243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.