IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v6y2014i4p2320-2337d35261.html
   My bibliography  Save this article

Simulation and Prediction of Decarbonated Development in Tourist Attractions Associated with Low-carbon Economy

Author

Listed:
  • Yuyan Luo

    (College of Management Science, Chengdu University of Technology, No.3, Dongsan Road, Erxian Bridge, Chengdu 610059, China)

  • Maozhu Jin

    (Business School, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China)

  • Peiyu Ren

    (Business School, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China)

  • Zhixue Liao

    (Business School, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China)

  • Zhongfu Zhu

    (Management Bureau of Jiuzhai Valley Scenic and Historic Interest Area, Zhang Zha Zhen, Aba Zhou 623402, China)

Abstract

In the field of tourism, the development of tourist attractions is gradually playing a crucial role in tourism economy, regional economy and national economy. While tourism economy is stimulated by growing demand, tourist attractions have been facing the situation that ecological environment is becoming fragile and environmental protection is increasingly difficult in China. As low-carbon economy is highlighted more than ever before, how to develop green economy, how to apply theories and technologies, which are related to low-carbon economy, to push forward decarbonation, to protect the ecological environment, and to boost the development of tourism economy have become the core problems for the sustainable development of tourist attractions system. In addition, this system has drawn the attention of scholars and practitioners in recent years. On the basis of low-carbon economy, this paper tries to define the decarbonated development goals and the connotation of tourist attractions system. In addition, it also discusses system structure associated with system dynamics and system engineering, and constructs system simulation model. In the end, a case study is conducted, that is, to predict the development trend of Jiuzhai Valley by adopting the constructed system so as to extend the previous research on low-carbon tourism and to guide the decarbonated development in tourist attractions.

Suggested Citation

  • Yuyan Luo & Maozhu Jin & Peiyu Ren & Zhixue Liao & Zhongfu Zhu, 2014. "Simulation and Prediction of Decarbonated Development in Tourist Attractions Associated with Low-carbon Economy," Sustainability, MDPI, vol. 6(4), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:6:y:2014:i:4:p:2320-2337:d:35261
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/6/4/2320/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/6/4/2320/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dalton, Michael & O'Neill, Brian & Prskawetz, Alexia & Jiang, Leiwen & Pitkin, John, 2008. "Population aging and future carbon emissions in the United States," Energy Economics, Elsevier, vol. 30(2), pages 642-675, March.
    2. Soytas, Ugur & Sari, Ramazan, 2009. "Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member," Ecological Economics, Elsevier, vol. 68(6), pages 1667-1675, April.
    3. Tsai, Kang-Ting & Lin, Tzu-Ping & Hwang, Ruey-Lung & Huang, Yu-Jing, 2014. "Carbon dioxide emissions generated by energy consumption of hotels and homestay facilities in Taiwan," Tourism Management, Elsevier, vol. 42(C), pages 13-21.
    4. Munday, Max & Turner, Karen & Jones, Calvin, 2013. "Accounting for the carbon associated with regional tourism consumption," Tourism Management, Elsevier, vol. 36(C), pages 35-44.
    5. Loo, Becky P.Y. & Li, Linna, 2012. "Carbon dioxide emissions from passenger transport in China since 1949: Implications for developing sustainable transport," Energy Policy, Elsevier, vol. 50(C), pages 464-476.
    6. Lin, Tzu-Ping, 2010. "Carbon dioxide emissions from transport in Taiwan's national parks," Tourism Management, Elsevier, vol. 31(2), pages 285-290.
    7. Xu, Jiuping & Yao, Liming & Mo, Liwen, 2011. "Simulation of low-carbon tourism in world natural and cultural heritage areas: An application to Shizhong District of Leshan City in China," Energy Policy, Elsevier, vol. 39(7), pages 4298-4307, July.
    8. Mazzarino, Marco, 2000. "The economics of the greenhouse effect: evaluating the climate change impact due to the transport sector in Italy," Energy Policy, Elsevier, vol. 28(13), pages 957-966, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arunodaya Raj Mishra & Ayushi Chandel & Parvaneh Saeidi, 2022. "Low-carbon tourism strategy evaluation and selection using interval-valued intuitionistic fuzzy additive ratio assessment approach based on similarity measures," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 7236-7282, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengcai Tang & Linsheng Zhong & Wenjing Fan & Shengkui Cheng, 2015. "Energy consumption and carbon emission for tourism transport in World Heritage Sites: a case of the Wulingyuan area in China," Natural Resources Forum, Blackwell Publishing, vol. 39(2), pages 134-150, May.
    2. Tang, Chengcai & Zhong, Linsheng & Ng, Pin, 2017. "Factors that Influence the Tourism Industry's Carbon Emissions: a Tourism Area Life Cycle Model Perspective," Energy Policy, Elsevier, vol. 109(C), pages 704-718.
    3. Kang-Ting Tsai & Tzu-Ping Lin & Yu-Hao Lin & Chien-Hung Tung & Yi-Ting Chiu, 2018. "The Carbon Impact of International Tourists to an Island Country," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    4. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    5. Jianping Zha & Rong Fan & Yao Yao & Lamei He & Yuanyuan Meng, 2021. "Framework for accounting for tourism carbon emissions in China: An industrial linkage perspective," Tourism Economics, , vol. 27(7), pages 1430-1460, November.
    6. Chia-Yun Huang & Ting-To Yu & Wei-Min Lin & Kung-Ming Chung & Keh-Chin Chang, 2022. "Energy Sustainability on an Offshore Island: A Case Study in Taiwan," Energies, MDPI, vol. 15(6), pages 1-15, March.
    7. Chao Bi & Jingjing Zeng, 2019. "Nonlinear and Spatial Effects of Tourism on Carbon Emissions in China: A Spatial Econometric Approach," IJERPH, MDPI, vol. 16(18), pages 1-17, September.
    8. Fangming Qin & Jingyan Liu & Gang Li, 2024. "Accounting for tourism carbon emissions: A consumption stripping perspective based on the tourism satellite account," Tourism Economics, , vol. 30(3), pages 633-654, May.
    9. Chengcai Tang & Ziwei Wan & Pin Ng & Xiangyi Dai & Qiuxiang Sheng & Da Chen, 2019. "Temporal and Spatial Evolution of Carbon Emissions and Their Influencing Factors for Tourist Attractions at Heritage Tourist Destinations," Sustainability, MDPI, vol. 11(21), pages 1-19, October.
    10. Katircioglu, Salih Turan & Feridun, Mete & Kilinc, Ceyhun, 2014. "Estimating tourism-induced energy consumption and CO2 emissions: The case of Cyprus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 634-640.
    11. Can Tansel TUGCU & Mert TOPCU, 2018. "The impact of carbon dioxide (CO2) emissions on tourism: Does the source of emission matter?," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(1(614), S), pages 125-136, Spring.
    12. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
    13. Achour, Houda & Belloumi, Mounir, 2016. "Decomposing the influencing factors of energy consumption in Tunisian transportation sector using the LMDI method," Transport Policy, Elsevier, vol. 52(C), pages 64-71.
    14. Yue Pan & Gangmin Weng & Conghui Li & Jianpu Li, 2021. "Coupling Coordination and Influencing Factors among Tourism Carbon Emission, Tourism Economic and Tourism Innovation," IJERPH, MDPI, vol. 18(4), pages 1-17, February.
    15. Lilis Yuaningsih & R. Adjeng Mariana Febrianti & Munawar Javed Ahmad, 2021. "Examining the Factors Affecting CO2 Emissions from Road Transportation in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 152-159.
    16. Rui Wang & Bing Xia & Suocheng Dong & Yu Li & Zehong Li & Duoxun Ba & Wenbiao Zhang, 2020. "Research on the Spatial Differentiation and Driving Forces of Eco-Efficiency of Regional Tourism in China," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    17. Zhao Liu & Ling Li & Yue-Jun Zhang, 2015. "Investigating the CO 2 emission differences among China’s transport sectors and their influencing factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1323-1343, June.
    18. Liping Zhao & Xincheng Li & Xiangmei Li & Chenyang Ai, 2022. "Dynamic Changes and Regional Differences of Net Carbon Sequestration of Food Crops in the Yangtze River Economic Belt of China," IJERPH, MDPI, vol. 19(20), pages 1-16, October.
    19. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    20. Touitou Mohammed, 2021. "Empirical Analysis of the Environmental Kuznets Curve for Economic Growth and CO2 Emissions in North African Countries," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 25(2), pages 67-77, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:6:y:2014:i:4:p:2320-2337:d:35261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.