IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v4y2012i10p2611-2629d20652.html
   My bibliography  Save this article

An Exergy-Based Model for Population Dynamics: Adaptation, Mutualism, Commensalism and Selective Extinction

Author

Listed:
  • Enrico Sciubba

    (Department of Mechanical & Aerospace Engineering, University of Roma La Sapienza, Via Eudossiana 18, 00184 Roma, Italy)

  • Federico Zullo

    (School of Mathematics, Statistics & Actuarial Science, University of Kent, Canterbury, CT2 7NF, UK)

Abstract

Following the critical analysis of the concept of “sustainability”, developed on the basis of exergy considerations in previous works, an analysis of possible species “behavior” is presented and discussed in this paper. Once more, we make use of one single axiom: that resource consumption (material and immaterial) can be quantified solely in terms of exergy flows . This assumption leads to a model of population dynamics that is applied here to describe the general behavior of interacting populations. The resulting equations are similar to the Lotka-Volterra ones, but more strongly coupled and intrinsically non-linear: as such, their solution space is topologically richer than those of classical prey-predator models. In this paper, we address an interesting specific problem in population dynamics: if a species assumes a commensalistic behavior, does it gain an evolutionary advantage? And, what is the difference, in terms of the access to the available exergy resources, between mutualism and commensalism? The model equations can be easily rearranged to accommodate both types of behavior, and thus only a brief discussion is devoted to this facet of the problem. The solution space is explored in the simplest case of two interacting populations: the model results in population curves in phase space that can satisfactorily explain the evolutionistic advantages and drawbacks of either behavior and, more importantly, identify the presence or absence of a “sustainable” solution in which both species survive.

Suggested Citation

  • Enrico Sciubba & Federico Zullo, 2012. "An Exergy-Based Model for Population Dynamics: Adaptation, Mutualism, Commensalism and Selective Extinction," Sustainability, MDPI, vol. 4(10), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:4:y:2012:i:10:p:2611-2629:d:20652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/4/10/2611/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/4/10/2611/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sciubba, Enrico & Zullo, Federico, 2014. "An exergy-based analysis of the co-evolution of different species sharing common resources," Ecological Modelling, Elsevier, vol. 273(C), pages 277-283.
    2. Grubbström, Robert W., 2015. "On the true value of resource consumption when using energy in industrial and other processes," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 377-384.
    3. Attorre, F. & Sciubba, E. & Vitale, M., 2019. "A thermodynamic model for plant growth, validated with Pinus sylvestris data," Ecological Modelling, Elsevier, vol. 391(C), pages 53-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:4:y:2012:i:10:p:2611-2629:d:20652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.