Author
Listed:
- Caihong Hui
(College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China)
- Xuelu Liu
(College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China)
- Xiaoning Zhang
(College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China)
Abstract
In recent decades, with the acceleration of industrialization and urbanization, the contradiction between resource development and environmental protection has become more and more prominent. Scientific simulation of the spatial and temporal correlation between habitat quality (HQ) and habitat fragmentation at a suitable scale is of great significance for maintaining the stability of regional ecosystems and achieving high-quality development. This study took the West Qinling Mountains as an example, where, firstly, the appropriate grid scale was determined based on the spatial stability of HQ, and the evolution characteristics of HQ were analyzed from 2000 to 2020 based on the InVEST model and GeoDa software. Secondly, the habitat fragmentation process was simulated from three characteristic dimensions of habitat area, habitat shape, and habitat distribution. Finally, the GWR model was used to explore the correlation mechanism between habitat fragmentation and HQ. The results showed the following: (1) The 3 km grid scale was a suitable scale for HQ evaluation and analysis in the West Qinling Mountains, and the scale effect was consistent across years. (2) The degree of HQ was at a higher level, where, from 2000 to 2020, it showed a decreasing trend, with a clear phenomenon of bipolar sharpening. The spatial distribution showed a pattern of “high in the west and low in the east, low in the north and high in the south”, and exhibited obvious spatial double clustering characteristics. (3) The degree of habitat fragmentation was at a medium level, where, from 2000 to 2020, it showed a increasing trend, with a clear bipolar contraction state. The spatial distribution showed a pattern of “high in the east and low in the west, high in the north and low in the south”, and the overall spatial distribution was retained with the change in time scale. (4) The effects of habitat fragmentation on HQ showed significant spatial and temporal non-stationary with a non-linear negative correlation. From 2000 to 2020, the degree of negative effect gradually increased, and the staggered distribution of forest, unused land, and water might offset the negative impact of unused land on HQ. The results could provide scientific evidence for the optimization of ecological patterns and ecological prevention and control in the West Qinling Mountains.
Suggested Citation
Caihong Hui & Xuelu Liu & Xiaoning Zhang, 2025.
"Exploring the Spatial and Temporal Correlation Between Habitat Quality and Habitat Fragmentation in the West Qinling Mountains, China,"
Sustainability, MDPI, vol. 17(7), pages 1-20, April.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:7:p:3256-:d:1628872
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3256-:d:1628872. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.