IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i7p3238-d1628514.html
   My bibliography  Save this article

Seasonal Spatiotemporal Dynamics and Gradients of the Urban Heat Island Effect in Subtropical Furnace Megacity

Author

Listed:
  • Chen Fu

    (College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
    Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China)

  • Cong Chen

    (College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
    Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China)

  • Zhitao Fu

    (Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China)

Abstract

Urban heat island (UHI) effect significantly influences the urban sustainability and health of cities and varies seasonally. However, spring and autumn have received less attention. Furthermore, research on long-term seasonal UHI changes and impacts is insufficient. This study examines the seasonal spatiotemporal dynamics and gradient characteristics of UHI in spring, summer, autumn, and winter in Changsha, a typical subtropical “furnace city” from 2006 to 2022. (1) Spatiotemporal dynamics: The high-temperature UHI (relatively high-temperature zone and high-temperature zone) range expands most significantly in spring and least in autumn. Additionally, the UHI migrates northward within the study area, and proximity to the urban core results in multiple high-temperature UHI effects. (2) Gradient characteristics: The proportion of the high-temperature UHI in spring, summer, autumn, and winter decreases to varying degrees within the 5 km gradient from the central point, but increases within the 6–8 km and 11–13 km gradients, especially in spring and autumn. Additionally, within the 8 km gradient in spring, the aggregation index (AI), contagion index (CONTAG), and largest patch index (LPI) decreased, with UHI patches more affected by these metrics in autumn. Overall, this study offers new insights into the seasonal effects and development of UHI, which are crucial for addressing climate change, promoting sustainability, and improving human well-being.

Suggested Citation

  • Chen Fu & Cong Chen & Zhitao Fu, 2025. "Seasonal Spatiotemporal Dynamics and Gradients of the Urban Heat Island Effect in Subtropical Furnace Megacity," Sustainability, MDPI, vol. 17(7), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3238-:d:1628514
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/7/3238/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/7/3238/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3238-:d:1628514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.