IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p2324-d1607018.html
   My bibliography  Save this article

Load-Bearing Performance of Precast Piles with Integrated Side Drainage Channels in Coastal Soft Soil

Author

Listed:
  • Shu-Hao Hu

    (Collaborative Innovation Center of Coastal Urban Rail Transit, Ningbo University, Ningbo 315211, China)

  • Yue-Bao Deng

    (Collaborative Innovation Center of Coastal Urban Rail Transit, Ningbo University, Ningbo 315211, China)

  • Shan Yu

    (Collaborative Innovation Center of Coastal Urban Rail Transit, Ningbo University, Ningbo 315211, China)

  • Ri-Hong Zhang

    (Ningbo Zhongchun Hi-Tech Co., Ltd., Ningbo 315145, China)

Abstract

To accelerate the dissipation of excess pore water pressure, enhance the bearing capacity of piles, and mitigate long-term settlement in soft ground, a novel green and lowcarbon pile foundation technology, termed the precast drainage pile (PDP) technology, is proposed. This innovative approach integrated precast pipe piles with prefabricated vertical drains (PVDs) attached to their sides. The piles were installed using static pile pressing and were subsequently subjected to vacuum-induced negative pressure to facilitate soil consolidation, which enhances the resource utilization rate of pile foundations and promotes the sustainable utilization of soft soil foundations. To investigate the bearing characteristics of the PDP, this study combined the shear displacement method for piles with the consolidation theory of soft soil foundations. A calculation model for the load-settlement behavior of precast piles, accounting for the influence of vacuum-induced soil consolidation, was derived, establishing a method for analyzing the load transfer mechanism of PDPs. The reliability of the theoretical model was validated through comparisons with engineering test results. Building on this foundation, the influence of factors such as consolidation period and pile length on the bearing characteristics of PDPs was analyzed. The results demonstrated that, compared to a 10 m precast pile without drainage, the ultimate bearing capacity of single piles with drainage durations of 3, 7, 14, and 28 days increased by 7.3%, 12.7%, 20.3%, and 29.6%, respectively. Furthermore, under a 7-day drainage condition, the bearing capacity of piles with lengths of 10 m, 20 m, and 30 m increased by 12.7%, 12.8%, and 13.1%, respectively. Overall, the findings of this study provide a theoretical basis for the research, development, and design calculations of this new sustainable pile technology.

Suggested Citation

  • Shu-Hao Hu & Yue-Bao Deng & Shan Yu & Ri-Hong Zhang, 2025. "Load-Bearing Performance of Precast Piles with Integrated Side Drainage Channels in Coastal Soft Soil," Sustainability, MDPI, vol. 17(5), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2324-:d:1607018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/2324/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/2324/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei-Kang Lin & Xiao-Wu Tang & Yuan Zou & Jia-Xin Liang & Ke-Yi Li, 2023. "Research on the Bearing Capacity and Sustainable Construction of a Vacuum Drainage Pipe Pile," Sustainability, MDPI, vol. 15(9), pages 1-15, May.
    2. Zhao Li & Da Huang, 2023. "Stability analysis of a water-rich slope stabilized by a novel upper-hollow drainage anti-slide pile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 425-446, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2324-:d:1607018. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.