Author
Listed:
- Richard Cramer
(Geosyntec Consultants, Long Beach, CA 90802, USA)
- Beth L. Parker
(College of Engineering & Physical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada)
- James Mark Stapleton
(Noblis, San Antonio, TX 78232, USA)
Abstract
The Environmental Consulting Industry in the United States has historically prioritized engineering approaches over geologic science in addressing groundwater contamination. This engineering-centric bias has often resulted in oversimplified conceptual site models (CSMs) that fail to capture subsurface heterogeneity, limiting the effectiveness of groundwater remediation strategies. Recognizing the critical role of geology, the industry is increasingly adopting a Remediation Geology approach, which emphasizes the development of robust geologic models as the foundation for remediation programs. Geologic models optimize site lithologic data to define subsurface permeability architecture. The geologic model primarily serves as the structure to develop a Process-Based CSM, which is a holistic model that supports the entire remediation life cycle. A Process-Based CSM addresses the physical, chemical, and biological processes governing contaminant occurrence with the goal of modeling and predicting subsurface conditions for improved decision making with respect to monitoring programs and remediation design. Case studies highlight the transformative impact of Remediation Geology and Process-Based CSMs, demonstrating significant improvements in cleanup efficiency and resource optimization across diverse hydrogeologic settings. By addressing site complexities such as fine-grained units and fracture networks, Remediation Geology and Process-Based CSMs have proven effective for contaminants ranging from chlorinated solvents to per- and polyfluoroalkyl substances (PFASs) and radionuclides.
Suggested Citation
Richard Cramer & Beth L. Parker & James Mark Stapleton, 2025.
"Remediation Geology and Process-Based Conceptual Site Models to Optimize Groundwater Remediation,"
Sustainability, MDPI, vol. 17(5), pages 1-45, February.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:5:p:2027-:d:1600550
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2027-:d:1600550. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.