Author
Listed:
- Hajar Fatorachian
(Leeds Business School, Leeds Beckett University, Leeds LS1 3HB, UK)
- Hadi Kazemi
(Leeds Business School, Leeds Beckett University, Leeds LS1 3HB, UK)
- Kulwant Pawar
(Business School, University of Nottingham, Nottingham NG8 1BB, UK)
Abstract
This study explores how digital technologies and data analytics can transform urban waste management in smart cities by addressing systemic inefficiencies. Integrating perspectives from the Resource-Based View, Socio-Technical Systems Theory, Circular Economy Theory, and Institutional Theory, the research examines sustainability, operational efficiency, and resilience in extended supply chains. A case study of Company A and its demand-side supply chain with Retailer B highlights key drivers of waste, including overstocking, inventory mismanagement, and inefficiencies in transportation and promotional activities. Using a mixed-methods approach, the study combines quantitative analysis of operational data with advanced statistical techniques and machine learning models. Key data sources include inventory records, sales forecasts, promotional activities, waste logs, and IoT sensor data collected over a two-year period. Machine learning techniques were employed to uncover complex, non-linear relationships between waste drivers and waste generation. A waste-type-specific emissions framework was used to assess environmental impacts, while IoT-enabled optimization algorithms helped improve logistics efficiency and reduce waste collection costs. Our findings indicate that the adoption of IoT and AI technologies significantly reduced waste by enhancing inventory control, optimizing transportation, and improving supply chain coordination. These digital innovations also align with circular economy principles by minimizing resource consumption and emissions, contributing to broader sustainability and resilience goals in urban environments. The study underscores the importance of integrating digital solutions into waste management strategies to foster more sustainable and efficient urban supply chains. While the research is particularly relevant to the food production and retail sectors, it also provides valuable insights for policymakers, urban planners, and supply chain stakeholders. By bridging theoretical frameworks with practical applications, this study demonstrates the potential of digital technologies to drive sustainability and resilience in smart cities.
Suggested Citation
Hajar Fatorachian & Hadi Kazemi & Kulwant Pawar, 2025.
"Digital Technologies in Food Supply Chain Waste Management: A Case Study on Sustainable Practices in Smart Cities,"
Sustainability, MDPI, vol. 17(5), pages 1-25, February.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:5:p:1996-:d:1600120
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:1996-:d:1600120. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.