IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i4p1731-d1594610.html
   My bibliography  Save this article

Polluting Industry Agglomeration, Environmental Regulation, and Urban Air Quality

Author

Listed:
  • Hanna Li

    (School of Economics and Management, Zhengzhou University of Light Industry, Zhengzhou 450001, China)

  • Yu Chen

    (School of Economics and Management, Zhengzhou University of Light Industry, Zhengzhou 450001, China)

Abstract

In China, with the increasing emphasis on the concept of green sustainable development, polluting industries characterized by pollution and high energy consumption are facing unprecedented challenges. The development of the intermediate demand-type characteristics of polluting industries should be more reasonably laid out and regulated. In this paper, environmental regulation and environmental quality are introduced into the new economic geography model. On the basis of theoretical analysis, the IV regression method was used to study the interaction between polluting industry agglomeration, environmental regulation, and their effects on urban air quality with key cities as research objects. The results show that an increase in the agglomeration of polluting industries leads to significant deterioration in urban air quality and that this effect is linear, whereas an increase in the intensity of environmental regulation significantly dampens this effect. Each 1% increase in the intensity of environmental regulation results in a 1.17% reduction in air pollution. Therefore, to effectively protect the environment, the development of polluting industries should be relatively decentralized. Additionally, city governments should fully consider their urban eco-geographical characteristics, directly reduce and indirectly inhibit the degree of agglomeration of polluting industries and simultaneously strengthen the intensity of environmental regulation.

Suggested Citation

  • Hanna Li & Yu Chen, 2025. "Polluting Industry Agglomeration, Environmental Regulation, and Urban Air Quality," Sustainability, MDPI, vol. 17(4), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1731-:d:1594610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/4/1731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/4/1731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pingping Dai & Yuanyuan Lin, 2021. "Should There Be Industrial Agglomeration in Sustainable Cities?: A Perspective Based on Haze Pollution," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    2. Javorcik Beata Smarzynska & Wei Shang-Jin, 2003. "Pollution Havens and Foreign Direct Investment: Dirty Secret or Popular Myth?," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 3(2), pages 1-34, December.
    3. Rubashkina, Yana & Galeotti, Marzio & Verdolini, Elena, 2015. "Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors," Energy Policy, Elsevier, vol. 83(C), pages 288-300.
    4. Antoine Dechezleprêtre & Misato Sato, 2017. "The Impacts of Environmental Regulations on Competitiveness," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 183-206.
    5. Brülhart, Marius & Mathys, Nicole A., 2008. "Sectoral agglomeration economies in a panel of European regions," Regional Science and Urban Economics, Elsevier, vol. 38(4), pages 348-362, July.
    6. Chen, Zhao & Kahn, Matthew E. & Liu, Yu & Wang, Zhi, 2018. "The consequences of spatially differentiated water pollution regulation in China," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 468-485.
    7. Xiaolan Tan & Wentao Yu & Shiwei Wu, 2022. "The Impact of the Dynamics of Agglomeration Externalities on Air Pollution: Evidence from Urban Panel Data in China," Sustainability, MDPI, vol. 14(1), pages 1-22, January.
    8. Cole, Matthew A. & Elliott, Robert J.R. & Shimamoto, Kenichi, 2005. "Industrial characteristics, environmental regulations and air pollution: an analysis of the UK manufacturing sector," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 121-143, July.
    9. Bai, Chong-En & Lu, Jiangyong & Tao, Zhigang, 2009. "How does privatization work in China?," Journal of Comparative Economics, Elsevier, vol. 37(3), pages 453-470, September.
    10. Li, Xuehui & Xu, Yangyang & Yao, Xin, 2021. "Effects of industrial agglomeration on haze pollution: A Chinese city-level study," Energy Policy, Elsevier, vol. 148(PA).
    11. Markusen, James R. & Morey, Edward R. & Olewiler, Nancy, 1995. "Competition in regional environmental policies when plant locations are endogenous," Journal of Public Economics, Elsevier, vol. 56(1), pages 55-77, January.
    12. Martin Andersson & Hans Lööf, 2011. "Agglomeration and productivity: evidence from firm-level data," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 46(3), pages 601-620, June.
    13. Zhouyan Xiao & Huihui Li & Le Sun, 2022. "Does population and industrial agglomeration exacerbate China’s pollution?," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 65(14), pages 2696-2718, December.
    14. Wei, Wei & Zhang, Wan-Li & Wen, Jun & Wang, Jun-Sheng, 2020. "TFP growth in Chinese cities: The role of factor-intensity and industrial agglomeration," Economic Modelling, Elsevier, vol. 91(C), pages 534-549.
    15. repec:clg:wpaper:2008-02 is not listed on IDEAS
    16. Hao, Yu & Guo, Yunxia & Li, Suixin & Luo, Shiyue & Jiang, Xueting & Shen, Zhiyang & Wu, Haitao, 2022. "Towards achieving the sustainable development goal of industry: How does industrial agglomeration affect air pollution?," Innovation and Green Development, Elsevier, vol. 1(1).
    17. Békés, Gábor & Harasztosi, Péter, 2013. "Agglomeration premium and trading activity of firms," Regional Science and Urban Economics, Elsevier, vol. 43(1), pages 51-64.
    18. Wang, Yun & Sun, Xiaohua & Guo, Xu, 2019. "Environmental regulation and green productivity growth: Empirical evidence on the Porter Hypothesis from OECD industrial sectors," Energy Policy, Elsevier, vol. 132(C), pages 611-619.
    19. Wang, Chunhua & Wu, JunJie & Zhang, Bing, 2018. "Environmental regulation, emissions and productivity: Evidence from Chinese COD-emitting manufacturers," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 54-73.
    20. Dan O'Donoghue & Bill Gleave, 2004. "A Note on Methods for Measuring Industrial Agglomeration," Regional Studies, Taylor & Francis Journals, vol. 38(4), pages 419-427.
    21. Akihiro Otsuka & Mika Goto & Toshiyuki Sueyoshi, 2010. "Industrial agglomeration effects in Japan: Productive efficiency, market access, and public fiscal transfer," Papers in Regional Science, Wiley Blackwell, vol. 89(4), pages 819-840, November.
    22. Xiaolin Wang & Zhenyang Li, 2024. "Re-Examination of the Relationship between Industrial Agglomeration and Haze Pollution: From the Perspective of the Spatial Moderating Effect of Environmental Regulation," Sustainability, MDPI, vol. 16(17), pages 1-19, September.
    23. Liang-jun Long, 2021. "Eco-efficiency and effectiveness evaluation toward sustainable urban development in China: a super-efficiency SBM–DEA with undesirable outputs," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14982-14997, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lena, Daniela & Pasurka, Carl A. & Cucculelli, Marco, 2022. "Environmental regulation and green productivity growth: Evidence from Italian manufacturing industries," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    2. Huang, Youxing & Xu, Qi & Zhao, Yanping, 2021. "Short-run pain, long-run gain: Desulfurization investment and productivity," Energy Economics, Elsevier, vol. 102(C).
    3. Zhang, Yijun & Li, Xiaoping & Song, Yi & Jiang, Feitao, 2021. "Can green industrial policy improve total factor productivity? Firm-level evidence from China," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 51-62.
    4. Yuping Deng & Yanrui Wu & Helian Xu, 2019. "Environmental Regulation and Export Product Quality: Evidence from Chinese Firms," Economics Discussion / Working Papers 19-14, The University of Western Australia, Department of Economics.
    5. Han, Chao & Li, Chongyu & Pei, Jiansuo & Wang, Chunhua, 2024. "Environmental regulation and intermediate imports: Firm-product-level evidence," Journal of Environmental Economics and Management, Elsevier, vol. 127(C).
    6. Liu, Cenjie & Fang, Jiayu & Xie, Rui, 2021. "Energy policy and corporate financial performance: Evidence from China's 11th five-year plan," Energy Economics, Elsevier, vol. 93(C).
    7. Cenjie Liu & Chunbo Ma & Rui Xie, 2020. "Structural, Innovation and Efficiency Effects of Environmental Regulation: Evidence from China’s Carbon Emissions Trading Pilot," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 741-768, April.
    8. Yi Ren & Yuan Tian & Chengqiu Zhang, 2022. "Investigating the mechanisms among industrial agglomeration, environmental pollution and sustainable industrial efficiency: a case study in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12467-12493, November.
    9. Ying She & Yaobin Liu & Yangu Deng & Lei Jiang, 2020. "Can China’s Government-Oriented Environmental Regulation Reduce Water Pollution? Evidence from Water Pollution Intensive Firms," Sustainability, MDPI, vol. 12(19), pages 1-19, September.
    10. Sangeeta Bansal & Massimo Filippini & Suchita Srinivasan, 2023. "How Regulation Might Fail to Reduce Energy Consumption While Still Stimulating Total Factor Productivity Growth," CER-ETH Economics working paper series 23/379, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    11. Wang, Xiaoling & Zhang, Tianyue & Nathwani, Jatin & Yang, Fangming & Shao, Qinglong, 2022. "Environmental regulation, technology innovation, and low carbon development: Revisiting the EKC Hypothesis, Porter Hypothesis, and Jevons’ Paradox in China's iron & steel industry," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    12. Zhang, Dan & Zheng, Mingbo & Feng, Gen-Fu & Chang, Chun-Ping, 2022. "Does an environmental policy bring to green innovation in renewable energy?," Renewable Energy, Elsevier, vol. 195(C), pages 1113-1124.
    13. Yi Li & Lili Ding & Yongliang Yang, 2020. "Can the Introduction of an Environmental Target Assessment Policy Improve the TFP of Textile Enterprises? A Quasi-Natural Experiment Based on the Huai River Basin in China," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    14. Hao, Yu & Guo, Yunxia & Li, Suixin & Luo, Shiyue & Jiang, Xueting & Shen, Zhiyang & Wu, Haitao, 2022. "Towards achieving the sustainable development goal of industry: How does industrial agglomeration affect air pollution?," Innovation and Green Development, Elsevier, vol. 1(1).
    15. Cenjie Liu & Zhongbao Zhou & Qing Liu & Rui Xie & Ximei Zeng, 2020. "Can a low-carbon development path achieve win-win development: evidence from China’s low-carbon pilot policy," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1199-1219, October.
    16. Liu, Donghua & Ren, Shenggang & Li, Wenming, 2022. "SO2 emissions trading and firm exports in China," Energy Economics, Elsevier, vol. 109(C).
    17. Xiaohu Li & Xigang Zhu & Jianshu Li & Chao Gu, 2021. "Influence of Different Industrial Agglomeration Modes on Eco-Efficiency in China," IJERPH, MDPI, vol. 18(24), pages 1-23, December.
    18. Gangqiang Yang & Ziyu Ding & Haisen Wang & Lingli Zou, 2023. "Can environmental regulation improve firm total factor productivity? The mediating effects of credit resource allocation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6799-6827, July.
    19. Zhuanlan Sun & Demi Zhu, 2023. "Investigating environmental regulation effects on technological innovation: A meta-regression analysis," Energy & Environment, , vol. 34(3), pages 463-492, May.
    20. Du, Minzhe & Liu, Yunxiao & Wang, Bing & Lee, Myunghun & Zhang, Ning, 2021. "The sources of regulated productivity in Chinese power plants: An estimation of the restricted cost function combined with DEA approach," Energy Economics, Elsevier, vol. 100(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1731-:d:1594610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.