IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p932-d1574798.html
   My bibliography  Save this article

Green Economic Efficiency and Coordinated Development in the Bohai Rim Region: Addressing Regional Disparities for Sustainable Innovation and Economic Transformation

Author

Listed:
  • Kun Xiao

    (Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao, China)

  • Xiaolong Chen

    (Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao, China)

  • Hongfeng Zhang

    (Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao, China)

  • Cora Un In Wong

    (Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao, China)

Abstract

The Bohai Rim Region plays a crucial role in the economy of northern China. Historically, the area’s development has been driven by resource-intensive industries, necessitating urgent structural transformation. In response, the government has actively promoted a green economic model. This study evaluates the efficiency of green economic performance and total factor productivity (TFP) across five provinces in the region, incorporating regional innovation capabilities and green innovation outputs into the green economy input–output system. The results show that green economic efficiency (GEE) has improved across regions, with higher technological advancement leading to greater improvements in green TFP. Additionally, the economic disparity between provinces and municipalities has been decreasing. This study indicates that, while inter-provincial differences are widening, intra-regional disparities are narrowing. Meanwhile, this study provides a foundation for regional economic integration and policymaking in the Bohai Rim, offering insights into balancing economic growth with environmental sustainability.

Suggested Citation

  • Kun Xiao & Xiaolong Chen & Hongfeng Zhang & Cora Un In Wong, 2025. "Green Economic Efficiency and Coordinated Development in the Bohai Rim Region: Addressing Regional Disparities for Sustainable Innovation and Economic Transformation," Sustainability, MDPI, vol. 17(3), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:932-:d:1574798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/932/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/932/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Da Gao & Yi Li & Linfang Tan, 2024. "Can environmental regulation break the political resource curse: evidence from heavy polluting private listed companies in China," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 67(13), pages 3190-3216, November.
    2. L. Kamran Bilir, 2014. "Patent Laws, Product Life-Cycle Lengths, and Multinational Activity," American Economic Review, American Economic Association, vol. 104(7), pages 1979-2013, July.
    3. Lee, Chien-Chiang & He, Zhi-Wen, 2022. "Natural resources and green economic growth: An analysis based on heterogeneous growth paths," Resources Policy, Elsevier, vol. 79(C).
    4. Zeng, Juying & Škare, Marinko & Lafont, Juan, 2021. "The co-integration identification of green innovation efficiency in Yangtze River Delta region," Journal of Business Research, Elsevier, vol. 134(C), pages 252-262.
    5. Zhu, Lin & Luo, Jian & Dong, Qingli & Zhao, Yang & Wang, Yunyue & Wang, Yong, 2021. "Green technology innovation efficiency of energy-intensive industries in China from the perspective of shared resources: Dynamic change and improvement path," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    6. Kennedy, Christopher & Steinberger, Julia & Gasson, Barrie & Hansen, Yvonne & Hillman, Timothy & Havránek, Miroslav & Pataki, Diane & Phdungsilp, Aumnad & Ramaswami, Anu & Mendez, Gara Villalba, 2010. "Methodology for inventorying greenhouse gas emissions from global cities," Energy Policy, Elsevier, vol. 38(9), pages 4828-4837, September.
    7. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    8. Richard S. J. Tol, 2009. "The Economic Effects of Climate Change," Journal of Economic Perspectives, American Economic Association, vol. 23(2), pages 29-51, Spring.
    9. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    10. Huang, Yiping, 2016. "Understanding China's Belt & Road Initiative: Motivation, framework and assessment," China Economic Review, Elsevier, vol. 40(C), pages 314-321.
    11. Jinlin Li & Litai Chen & Ying Chen & Jiawen He, 2022. "Digital economy, technological innovation, and green economic efficiency—Empirical evidence from 277 cities in China," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(3), pages 616-629, April.
    12. Amigues, Jean-Pierre & Moreaux, Michel, 2019. "Competing land uses and fossil fuel, and optimal energy conversion rates during the transition toward a green economy under a pollution stock constraint," Journal of Environmental Economics and Management, Elsevier, vol. 97(C), pages 92-115.
    13. Doğan, Buhari & Shahbaz, Muhammad & Bashir, Muhammad Farhan & Abbas, Shujaat & Ghosh, Sudeshna, 2023. "Formulating energy security strategies for a sustainable environment: Evidence from the newly industrialized economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    14. Meiling Wang & Silu Pang & Ikram Hmani & Ilham Hmani & Cunfang Li & Zhengxia He, 2021. "Towards sustainable development: How does technological innovation drive the increase in green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 217-227, January.
    15. Li, Ye & Chen, Yiyan, 2021. "Development of an SBM-ML model for the measurement of green total factor productivity: The case of pearl river delta urban agglomeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Miao, Chenglin & Fang, Debin & Sun, Liyan & Luo, Qiaoling, 2017. "Natural resources utilization efficiency under the influence of green technological innovation," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 153-161.
    17. Liyuan Zhang & Xiang Ma & Young-Seok Ock & Lingli Qing, 2022. "Research on Regional Differences and Influencing Factors of Chinese Industrial Green Technology Innovation Efficiency Based on Dagum Gini Coefficient Decomposition," Land, MDPI, vol. 11(1), pages 1-20, January.
    18. Zhao, Xin & Nakonieczny, Joanna & Jabeen, Fauzia & Shahzad, Umer & Jia, Wenxing, 2022. "Does green innovation induce green total factor productivity? Novel findings from Chinese city level data," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    19. Cristina I. Fernandes & Pedro Mota Veiga & João J.M. Ferreira & Mathew Hughes, 2021. "Green growth versus economic growth: Do sustainable technology transfer and innovations lead to an imperfect choice?," Business Strategy and the Environment, Wiley Blackwell, vol. 30(4), pages 2021-2037, May.
    20. Theil, Henri & Theil, Henri, 1979. "World income inequality and its components," Economics Letters, Elsevier, vol. 2(1), pages 99-102.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruomeng Zhou & Yunsheng Zhang, 2023. "Measurement of Urban Green Total Factor Productivity and Analysis of Its Temporal and Spatial Evolution in China," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    2. Wang, Qian & Ren, Shuming, 2022. "Evaluation of green technology innovation efficiency in a regional context: A dynamic network slacks-based measuring approach," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    3. Yuxin Fang & Hongjun Cao & Jihui Sun, 2022. "Impact of Artificial Intelligence on Regional Green Development under China’s Environmental Decentralization System—Based on Spatial Durbin Model and Threshold Effect," IJERPH, MDPI, vol. 19(22), pages 1-27, November.
    4. Mengchao Yao & Jinjun Duan & Qingsong Wang, 2022. "Spatial and Temporal Evolution Analysis of Industrial Green Technology Innovation Efficiency in the Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(11), pages 1-20, May.
    5. Liwen Sun & Ying Han, 2022. "Spatial Correlation Network Structure and Influencing Factors of Two-Stage Green Innovation Efficiency: Evidence from China," Sustainability, MDPI, vol. 14(18), pages 1-22, September.
    6. Chunbin Zhang & Rong Zhou & Jundong Hou & Mengtong Feng, 2022. "Spatial-Temporal Evolution and Convergence Characteristics of Agricultural Eco-Efficiency in China from a Low-Carbon Perspective," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    7. Yang Liu & Yanlin Yang & Shuang Zheng & Lei Xiao & Hongjie Gao & Hechen Lu, 2022. "Dynamic Impact of Technology and Finance on Green Technology Innovation Efficiency: Empirical Evidence from China’s Provinces," IJERPH, MDPI, vol. 19(8), pages 1-17, April.
    8. Yang, Su & Shen, Jie & Deng, Xiaopeng & Lu, Kun & Liu, Zeru & Cheng, Baoquan, 2024. "Digital economy revolutionizing green total factor productivity in construction industry," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    9. Wang, Jianda & Guo, Dongsheng, 2023. "Siphon and radiation effects of ICT agglomeration on green total factor productivity: Evidence from a spatial Durbin model," Energy Economics, Elsevier, vol. 126(C).
    10. Sheng Xu & Wenran Pan & Demei Wen, 2023. "Do Carbon Emission Trading Schemes Promote the Green Transition of Enterprises? Evidence from China," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    11. Guang Chen & Akira Hibiki, 2022. "Can the Carbon Emission Trading Scheme Influence Industrial Green Production in China?," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    12. Xu, Ru-Yu & Wang, Ke-Liang & Miao, Zhuang, 2024. "The impact of digital technology innovation on green total-factor energy efficiency in China: Does economic development matter?," Energy Policy, Elsevier, vol. 194(C).
    13. Lingzhang Kong & Jinye Li, 2022. "Digital Economy Development and Green Economic Efficiency: Evidence from Province-Level Empirical Data in China," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    14. Long Qian & Yunjie Zhou & Ying Sun, 2023. "Regional Differences, Distribution Dynamics, and Convergence of the Green Total Factor Productivity of China’s Cities under the Dual Carbon Targets," Sustainability, MDPI, vol. 15(17), pages 1-26, August.
    15. Zhao, Xing & Guo, Yifan & Feng, Tianchu, 2023. "Towards green recovery: Natural resources utilization efficiency under the impact of environmental information disclosure," Resources Policy, Elsevier, vol. 83(C).
    16. Zhangsheng Liu & Xiaolu Zhang & Liuqingqing Yang & Yinjie Shen, 2021. "Access to Digital Financial Services and Green Technology Advances: Regional Evidence from China," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
    17. Zhou, Lin & Fan, Jianshuang & Hu, Mingzhi & Yu, Xiaofen, 2024. "Clean air policy and green total factor productivity: Evidence from Chinese prefecture-level cities," Energy Economics, Elsevier, vol. 133(C).
    18. Liu, Yang & Wang, Jianda & Dong, Kangyin & Taghizadeh-Hesary, Farhad, 2023. "How does natural resource abundance affect green total factor productivity in the era of green finance? Global evidence," Resources Policy, Elsevier, vol. 81(C).
    19. Pei Zhao & Junhua Guo & Yang Wang, 2023. "How Does the Digital Economy Affect Green Development?—Evidence from 284 Cities in China," Sustainability, MDPI, vol. 15(15), pages 1-24, July.
    20. Sun, Yu & Yang, Feng & Wang, Dawei & Ang, Sheng, 2023. "Efficiency evaluation for higher education institutions in China considering unbalanced regional development: A meta-frontier Super-SBM model," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:932-:d:1574798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.