IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p807-d1572102.html
   My bibliography  Save this article

Unraveling Circular Conundrums with a Cheeky Twist: Proposal for a New Way of Measuring Circular Economy Efforts at the Product Level Within Procurement-to-Waste System Boundaries—A Case Study from the Airline Industry

Author

Listed:
  • Christine Grimm

    (Institute of Innovation and Technology Management, Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland)

Abstract

This study addresses the challenge of evaluating circularity within the procurement-to-waste system boundaries, using the example of single-use in-flight drinking cups provided by SWISS International Air Lines Ltd., the national airline of Switzerland. A comprehensive review of the academic literature, market-based tools, and political regulations highlights the absence of adequate methodologies for assessing circularity within these specific system boundaries. Existing approaches, primarily designed at the product level, are often either excessively complex or focused solely on waste management. To address this gap, the research proposes an extension to the Circular Material Use rate (CMU), currently implemented at the European Union level. The traditional CMU rate does not account for circular inflow, thereby neglecting procurement decisions. In response, this study introduces an extended version of the CMU, expressed as CMU Extended = (Circular Inflow + Circular Outflow)/(2 × Total Material). This modification enables a more holistic evaluation of circularity by incorporating both inflows and outflows of materials in relation to total material use. Empirical testing demonstrated the applicability of this extended CMU in the context of SWISS, allowing for an efficient assessment of circularity for single-use in-flight drinking cups. From these initial results, we hypothesize that this ratio is expected to be broadly applicable beyond the airline industry, providing a valuable tool for businesses seeking to measure circularity within similar system boundaries.

Suggested Citation

  • Christine Grimm, 2025. "Unraveling Circular Conundrums with a Cheeky Twist: Proposal for a New Way of Measuring Circular Economy Efforts at the Product Level Within Procurement-to-Waste System Boundaries—A Case Study from th," Sustainability, MDPI, vol. 17(3), pages 1-22, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:807-:d:1572102
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/807/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/807/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pasqualina Sacco & Christian Vinante & Yuri Borgianni & Guido Orzes, 2021. "Circular Economy at the Firm Level: A New Tool for Assessing Maturity and Circularity," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    2. Figge, Frank & Thorpe, Andrea Stevenson & Givry, Philippe & Canning, Louise & Franklin-Johnson, Elizabeth, 2018. "Longevity and Circularity as Indicators of Eco-Efficient Resource Use in the Circular Economy," Ecological Economics, Elsevier, vol. 150(C), pages 297-306.
    3. Sheu, Jiuh-Biing & Chou, Yi-Hwa & Hu, Chun-Chia, 2005. "An integrated logistics operational model for green-supply chain management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(4), pages 287-313, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franco Fassio & Chiara Chirilli, 2023. "The Circular Economy and the Food System: A Review of Principal Measuring Tools," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    2. L. Rocchi & L. Paolotti & C. Cortina & F. F. Fagioli & A. Boggia, 2021. "Measuring circularity: an application of modified Material Circularity Indicator to agricultural systems," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-13, December.
    3. Marcela Marçal Alves Pinto & João Luiz Kovaleski & Rui Tadashi Yoshino & Regina Negri Pagani, 2019. "Knowledge and Technology Transfer Influencing the Process of Innovation in Green Supply Chain Management: A Multicriteria Model Based on the DEMATEL Method," Sustainability, MDPI, vol. 11(12), pages 1-33, June.
    4. Fan Xiao & Zhi-Hua Hu & Ke-Xin Wang & Pei-Hua Fu, 2015. "Spatial Distribution of Energy Consumption and Carbon Emission of Regional Logistics," Sustainability, MDPI, vol. 7(7), pages 1-20, July.
    5. Brandenburg, Marcus & Govindan, Kannan & Sarkis, Joseph & Seuring, Stefan, 2014. "Quantitative models for sustainable supply chain management: Developments and directions," European Journal of Operational Research, Elsevier, vol. 233(2), pages 299-312.
    6. Lafforgue, Gilles & Lorang, Etienne, 2022. "Recycling under environmental, climate and resource constraints," Resource and Energy Economics, Elsevier, vol. 67(C).
    7. Kannan, Devika & Jabbour, Ana Beatriz Lopes de Sousa & Jabbour, Charbel José Chiappetta, 2014. "Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company," European Journal of Operational Research, Elsevier, vol. 233(2), pages 432-447.
    8. Chen, Yenming J. & Sheu, Jiuh-Biing, 2009. "Environmental-regulation pricing strategies for green supply chain management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(5), pages 667-677, September.
    9. Subhani, Muhammad Imtiaz & Hasan, Syed Akif & Osman, Ms. Amber, 2012. "Impact of Organization Culture on Promoting Green Supply Chain," MPRA Paper 45090, University Library of Munich, Germany.
    10. Caroline Samberger & Sanaz Imen & Katerina Messologitis & Arthur Umble & Joseph G. Jacangelo, 2024. "Assessing circularity of wastewater treatment systems: A critical review of indicators," Journal of Industrial Ecology, Yale University, vol. 28(2), pages 262-276, April.
    11. Liao, Haolan & Zhang, Qingyu & Li, Lu, 2023. "Optimal procurement strategy for multi-echelon remanufacturing systems under quality uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    12. Ubeda, S. & Arcelus, F.J. & Faulin, J., 2011. "Green logistics at Eroski: A case study," International Journal of Production Economics, Elsevier, vol. 131(1), pages 44-51, May.
    13. Frota Neto, J. Quariguasi & Bloemhof-Ruwaard, J.M. & van Nunen, J.A.E.E. & van Heck, E., 2008. "Designing and evaluating sustainable logistics networks," International Journal of Production Economics, Elsevier, vol. 111(2), pages 195-208, February.
    14. Amir Abbas Shojaie & Sepideh Babaie & Emel Sayah & Davood Mohammaditabar, 2018. "Analysis and Prioritization of Green Health Suppliers Using Fuzzy ELECTRE Method with a Case Study," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 19(1), pages 39-52, March.
    15. Zhu, Qinghua & Sarkis, Joseph & Lai, Kee-hung, 2008. "Confirmation of a measurement model for green supply chain management practices implementation," International Journal of Production Economics, Elsevier, vol. 111(2), pages 261-273, February.
    16. Rui Ren & Wanjie Hu & Jianjun Dong & Bo Sun & Yicun Chen & Zhilong Chen, 2019. "A Systematic Literature Review of Green and Sustainable Logistics: Bibliometric Analysis, Research Trend and Knowledge Taxonomy," IJERPH, MDPI, vol. 17(1), pages 1-25, December.
    17. Hassini, Elkafi & Surti, Chirag & Searcy, Cory, 2012. "A literature review and a case study of sustainable supply chains with a focus on metrics," International Journal of Production Economics, Elsevier, vol. 140(1), pages 69-82.
    18. R. Jothi Basu & Nachiappan Subramanian & Angappa Gunasekaran & P. L. K. Palaniappan, 2017. "Influence of non-price and environmental sustainability factors on truckload procurement process," Annals of Operations Research, Springer, vol. 250(2), pages 363-388, March.
    19. Hinrika Droege & Andrea Raggi & Tomás B. Ramos, 2021. "Overcoming Current Challenges for Circular Economy Assessment Implementation in Public Sector Organisations," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    20. Md. Abdul Moktadir & Towfique Rahman & Syed Mithun Ali & Nazmun Nahar & Sanjoy Kumar Paul, 2020. "Examining barriers to reverse logistics practices in the leather footwear industry," Annals of Operations Research, Springer, vol. 293(2), pages 715-746, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:807-:d:1572102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.