IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p1281-d1584069.html
   My bibliography  Save this article

Increasing Carbon Sequestration, Land-Use Efficiency, and Building Decarbonization with Short Rotation Eucalyptus

Author

Listed:
  • Kate Chilton

    (Global Bamboo Technologies, Inc., Ocala, FL 34472, USA)

  • Otavio Campoe

    (Department of Forest Science, Federal University of Lavras, Lavras 37200-000, MG, Brazil)

  • Nicholas Allan

    (Global Bamboo Technologies, Inc., Ocala, FL 34472, USA)

  • Hal Hinkle

    (Global Bamboo Technologies, Inc., Ocala, FL 34472, USA
    World Bamboo Foundation, Plymouth, MA 02360, USA)

Abstract

Global construction activity remains the least responsive large economic sector to the exigencies of global climate change. The focus has centered on operating emissions of buildings, while upfront embodied emissions in building materials remain unabated. Softwood timber, a commonly used building material, can remove and store atmospheric carbon in buildings for decades. However, the upfront climate benefits of using softwoods in building frames are limited due to the multi-decadal growth and harvest cycles of forest plantations. The objective of this study was to demonstrate that fast-growing Eucalyptus is a superior carbon sequestration feedstock for building materials compared to slow-growing softwoods. We quantified the relative carbon benefits of Eucalyptus to a group of commonly used North American softwoods in an all-carbon-pools, risk-adjusted model that compares the net present value of carbon flows over a 100-year period. Using a novel carbon benefit multiple metric, the analysis shows that short-rotation, high-yield Eucalyptus plantations are 2.7× to 4.6× better at sequestering atmospheric carbon than softwoods, depending on the various risk perception scenarios. The results indicate that building decarbonization can be enhanced by using fast-growing and high-yielding Eucalyptus species plantations.

Suggested Citation

  • Kate Chilton & Otavio Campoe & Nicholas Allan & Hal Hinkle, 2025. "Increasing Carbon Sequestration, Land-Use Efficiency, and Building Decarbonization with Short Rotation Eucalyptus," Sustainability, MDPI, vol. 17(3), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1281-:d:1584069
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/1281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/1281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brent Sohngen & Sandra Brown, 2008. "Extending timber rotations: carbon and cost implications," Climate Policy, Taylor & Francis Journals, vol. 8(5), pages 435-451, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    2. L. Gharis & J. Roise & J. McCarter, 2015. "A compromise programming model for developing the cost of including carbon pools and flux into forest management," Annals of Operations Research, Springer, vol. 232(1), pages 115-133, September.
    3. Rose A Graves & Ryan D Haugo & Andrés Holz & Max Nielsen-Pincus & Aaron Jones & Bryce Kellogg & Cathy Macdonald & Kenneth Popper & Michael Schindel, 2020. "Potential greenhouse gas reductions from Natural Climate Solutions in Oregon, USA," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-30, April.
    4. Lintunen, Jussi & Uusivuori, Jussi, 2014. "On The Economics of Forest Carbon: Renewable and Carbon Neutral But Not Emission Free," Climate Change and Sustainable Development 165755, Fondazione Eni Enrico Mattei (FEEM).
    5. Nepal, Prakash & Ince, Peter J. & Skog, Kenneth E. & Chang, Sun J., 2013. "Forest carbon benefits, costs and leakage effects of carbon reserve scenarios in the United States," Journal of Forest Economics, Elsevier, vol. 19(3), pages 286-306.
    6. Dwivedi, Puneet & Khanna, Madhu & Sharma, Ajay & Susaeta, Andres, 2016. "Efficacy of carbon and bioenergy markets in mitigating carbon emissions on reforested lands: A case study from Southern United States," Forest Policy and Economics, Elsevier, vol. 67(C), pages 1-9.
    7. Susaeta, Andres & Chang, Sun Joseph & Carter, Douglas R. & Lal, Pankaj, 2014. "Economics of carbon sequestration under fluctuating economic environment, forest management and technological changes: An application to forest stands in the southern United States," Journal of Forest Economics, Elsevier, vol. 20(1), pages 47-64.
    8. Moore, Karli A. & Kovacs, Kent F., 2018. "Marginal Cost of Carbon Abatement through Afforestation of Agricultural Land in the Mississippi Delta," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266595, Southern Agricultural Economics Association.
    9. G. Cornelis van Kooten, 2023. "Determining optimal forest rotation ages and carbon offset credits: Accounting for post‐harvest carbon storehouses," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 71(2), pages 255-272, June.
    10. Acosta, Montserrat & Sohngen, Brent, 2009. "How big is leakage from forestry carbon credits? Estimates from a Global Model," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49468, Agricultural and Applied Economics Association.
    11. Taeyoung Kim & Christian Langpap, 2015. "Incentives for Carbon Sequestration Using Forest Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(3), pages 491-520, November.
    12. Köthke, Margret & Dieter, Matthias, 2010. "Effects of carbon sequestration rewards on forest management--An empirical application of adjusted Faustmann Formulae," Forest Policy and Economics, Elsevier, vol. 12(8), pages 589-597, October.
    13. Kim, Taeyoung & Langpap, Christian, 2012. "Private Forest Landowners’ Response to Incentives for Carbon Sequestration," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124362, Agricultural and Applied Economics Association.
    14. McCarl, Bruce A. & Attavanich, Witsanu & Musumba, Mark & Mu, Jianhong E. & Aisabokhae, Ruth, 2011. "Land Use and Climate Change," MPRA Paper 83993, University Library of Munich, Germany, revised 2014.
    15. Cho, Seong-Hoon & Lee, Juhee & Roberts, Roland & Yu, Edward T. & Armsworth, Paul R., 2018. "Impact of market conditions on the effectiveness of payments for forest-based carbon sequestration," Forest Policy and Economics, Elsevier, vol. 92(C), pages 33-42.
    16. Christopher Galik & Megan Mobley & Daniel Richter, 2009. "A virtual “field test” of forest management carbon offset protocols: the influence of accounting," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(7), pages 677-690, October.
    17. J. Sartori, Pedro & Schons, Stella Z. & Amacher, Gregory S. & Burkhart, Harold, 2024. "Deferred rotation carbon programs for even-aged forests: Aligning landowner and societal objectives," Forest Policy and Economics, Elsevier, vol. 168(C).
    18. Haim, David & White, Eric M. & Alig, Ralph J., 2014. "Permanence of agricultural afforestation for carbon sequestration under stylized carbon markets in the U.S," Forest Policy and Economics, Elsevier, vol. 41(C), pages 12-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1281-:d:1584069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.