IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p1251-d1583425.html
   My bibliography  Save this article

Collaborative Optimization of Stope Cooling and Geothermal Energy Exploitation for Backfill Embedded Heat Exchanger

Author

Listed:
  • Mei Wang

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi’an 710054, China)

  • Wanying Ni

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Lang Liu

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Yutong Zan

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Jiahui Li

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China)

Abstract

Backfillembedded heat exchanger (BEHE) are used for stope cooling during the mining process and for geothermal energy recovery during the long-term heat extraction stage. This study develops a three-dimensional BEHE model to optimize the pipe arrangement, considering both the immediate requirements of stope cooling and the long-term objectives of geothermal energy exploitation. To evaluate the effects of geothermal energy extraction and stope cooling, heat extraction per meter and average temperature in the stope area are used as criterion parameters. The results indicate that the cooling efficiency is positively correlated with the number of pipe layers and pipe diameter, while it is negatively correlated with pipe spacing, interlayer spacing, and the distance from the bottom of the backfill-embedded heat exchanger (BEHE) to the cold radiation surface. Geothermal energy extraction, on the other hand, is positively correlated with the number of pipe layers, interlayer spacing, and the distance from the bottom of the BEHE to the cold radiation surface. Considering both objectives, the optimal pipe arrangement is determined to be PLS = 1.0 m, S = 500 mm, F = 3, D = 0.05 m, and DN = 50 mm. Additionally, based on a comprehensive analysis of extensive calculation results, an empirical correlation for heat extraction per meter as a function of pipe arrangement parameters was derived.

Suggested Citation

  • Mei Wang & Wanying Ni & Lang Liu & Yutong Zan & Jiahui Li, 2025. "Collaborative Optimization of Stope Cooling and Geothermal Energy Exploitation for Backfill Embedded Heat Exchanger," Sustainability, MDPI, vol. 17(3), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1251-:d:1583425
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/1251/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/1251/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olabi, Abdul Ghani & Mahmoud, Montaser & Soudan, Bassel & Wilberforce, Tabbi & Ramadan, Mohamad, 2020. "Geothermal based hybrid energy systems, toward eco-friendly energy approaches," Renewable Energy, Elsevier, vol. 147(P1), pages 2003-2012.
    2. Xiaoyan Zhang & Baoyun Bu & Lang Liu & Tianrun Cao & Yaping Ke & Qiangqiang Du, 2021. "Numerical Simulation on Cooling Effect of Working Face under Radiation Cooling Mode in Deep Well," Energies, MDPI, vol. 14(15), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skroufouta, S. & Baltas, E., 2021. "Investigation of hybrid renewable energy system (HRES) for covering energy and water needs on the Island of Karpathos in Aegean Sea," Renewable Energy, Elsevier, vol. 173(C), pages 141-150.
    2. Heguo Jiang & Shuwen Cui & Xingwang Mu & Lin Tang & Yuheng Wang & Congguang Jian & Chen Chen, 2022. "Influencing Factors of a Cooling System Based on Low-Temperature Mine Water as a Direct Cooling Source," Energies, MDPI, vol. 15(23), pages 1-14, November.
    3. Nassef, Ahmed M. & Olabi, A.G. & Rodriguez, Cristina & Abdelkareem, Mohammad Ali & Rezk, Hegazy, 2021. "Optimal operating parameter determination and modeling to enhance methane production from macroalgae," Renewable Energy, Elsevier, vol. 163(C), pages 2190-2197.
    4. He, Jintao & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Zhang, Yonghao & Zhang, Meiyan & Yao, Yu & Cai, Jinwen & Shu, Gequn, 2022. "Control strategy for a CO2-based combined cooling and power generation system based on heat source and cold sink fluctuations," Energy, Elsevier, vol. 257(C).
    5. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    6. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    7. Coninx, Matthijs & Nies, Jarne De & Hermans, Louis & Peere, Wouter & Boydens, Wim & Helsen, Lieve, 2024. "Cost-efficient cooling of buildings by means of geothermal borefields with active and passive cooling," Applied Energy, Elsevier, vol. 355(C).
    8. Tabbi Wilberforce & Abdul Ghani Olabi, 2020. "Performance Prediction of Proton Exchange Membrane Fuel Cells (PEMFC) Using Adaptive Neuro Inference System (ANFIS)," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    9. Mahmoud, Montaser & Alkhedher, Mohammad & Ramadan, Mohamad & Naher, Sumsun & Pullen, Keith, 2022. "An investigation on organic Rankine cycle incorporating a ground-cooled condenser: Working fluid selection and regeneration," Energy, Elsevier, vol. 249(C).
    10. Zhang, Weiyi & Zhou, Haiyang & Bao, Xiaohua & Cui, Hongzhi, 2023. "Outlet water temperature prediction of energy pile based on spatial-temporal feature extraction through CNN–LSTM hybrid model," Energy, Elsevier, vol. 264(C).
    11. Mohd Alsaleh & Xiaohui Wang, 2023. "How Does Information and Communication Technology Affect Geothermal Energy Sustainability?," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    12. Hashemian, Nasim & Noorpoor, Alireza, 2022. "A geothermal-biomass powered multi-generation plant with freshwater and hydrogen generation options: Thermo-economic-environmental appraisals and multi-criteria optimization," Renewable Energy, Elsevier, vol. 198(C), pages 254-266.
    13. Rosaria E.C. Amaral & Joel Brito & Matt Buckman & Elicia Drake & Esther Ilatova & Paige Rice & Carlos Sabbagh & Sergei Voronkin & Yewande S. Abraham, 2020. "Waste Management and Operational Energy for Sustainable Buildings: A Review," Sustainability, MDPI, vol. 12(13), pages 1-21, July.
    14. Wang, Yongzhen & Li, Chengjun & Zhao, Jun & Wu, Boyuan & Du, Yanping & Zhang, Jing & Zhu, Yilin, 2021. "The above-ground strategies to approach the goal of geothermal power generation in China: State of art and future researches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Dai, Hao & Yin, Tubing & Wu, You & Chen, Yongjun & Ma, Jiexin & Li, Xibing, 2024. "A study of geothermal hydraulic fracture surface morphology and heat transfer characteristics," Energy, Elsevier, vol. 312(C).
    16. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    17. Zhao, Anjun & Jiao, Yang & Quan, Wei & Chen, Yiren, 2024. "Net zero carbon rural integrated energy system design optimization based on the energy demand in temporal and spatial dimensions," Renewable Energy, Elsevier, vol. 222(C).
    18. Xiaoyan Zhang & Muyan Xu & Li Liu & Lang Liu & Mei Wang & Haiwei Ji & KI-IL Song, 2020. "The Concept, Technical System and Heat Transfer Analysis on Phase-Change Heat Storage Backfill for Exploitation of Geothermal Energy," Energies, MDPI, vol. 13(18), pages 1-22, September.
    19. Yang, Tianle & Li, Fangmin & Du, Min & Huang, Miao & Li, Yinuo, 2023. "Impacts of alternative energy production innovation on reducing CO2 emissions: Evidence from China," Energy, Elsevier, vol. 268(C).
    20. He, Jintao & Zhang, Yonghao & Tian, Hua & Wang, Xuan & Li, Ligeng & Cai, Jinwen & Shi, Lingfeng & Shu, Gequn, 2022. "Dynamic performance of a multi-mode operation CO2-based system combining cooling and power generation," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1251-:d:1583425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.