IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i2p600-d1566779.html
   My bibliography  Save this article

Renewable Energy Community Sizing Based on Stochastic Optimization and Unsupervised Clustering

Author

Listed:
  • Luka Budin

    (University of Zagreb Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia)

  • Marko Delimar

    (University of Zagreb Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia)

Abstract

Renewable Energy Communities (RECs) are emerging as significant in the global paradigm shift towards a smart and sustainable energy environment. By empowering energy consumers to actively participate in local energy generation, and sharing, using renewable energy sources, energy storage, and flexible loads, REC participants can reduce costs, and also contribute to low-carbon objectives, providing the flexibility needed to address modern smart grid challenges. This article presents a mixed integer linear programming model for optimal sizing of the solar PVs and battery energy storage systems (BESS) of REC participants who engage in P2P energy exchange. The model is formulated using a two-stage stochastic optimization to address load and PV uncertainty, and unsupervised clustering to structure the data for the stochastic optimization process. The model enables sizing solar PVs for different rooftop geometries and the objective function includes comprehensively defined electricity, operational, and scaled investment costs for solar PV and BESS, where economic fairness constraints are analyzed and implemented. The model is validated on real solar and atmospheric measured data from Zagreb, Croatia, and publicly available household consumption data from Northern Germany. The article also analyzes how tariff models, and electricity prices affect PV and BESS sizes, cost reductions, and P2P energy exchange for different REC participants with varying consumption and production profiles.

Suggested Citation

  • Luka Budin & Marko Delimar, 2025. "Renewable Energy Community Sizing Based on Stochastic Optimization and Unsupervised Clustering," Sustainability, MDPI, vol. 17(2), pages 1-25, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:600-:d:1566779
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/2/600/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/2/600/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:600-:d:1566779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.