IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i2p529-d1564977.html
   My bibliography  Save this article

Timber Biogenic Carbon Stock in the Urban Environment: Santiago City as a Second Forest

Author

Listed:
  • Felipe Victorero

    (School of Architecture, Pontificia Universidad Católica de Chile, El Comendador 1916, Santiago 7520245, RM, Chile
    Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Santiago 7820436, RM, Chile)

  • Waldo Bustamante

    (School of Architecture, Pontificia Universidad Católica de Chile, El Comendador 1916, Santiago 7520245, RM, Chile
    Centre for Sustainable Urban Development (CEDEUS), Pontificia Universidad Católica de Chile, El Comendador 1916, Santiago 7520245, RM, Chile)

Abstract

Urban environments significantly contribute to carbon emissions, both through operational processes and the embodied emissions of construction materials, thus exacerbating climate change. Nevertheless, urban timber structures offer a viable alternative by acting as carbon sinks, capable of sequestering carbon for decades or even centuries. This study develops and applies a methodology to quantify the biogenic carbon stored in Santiago City’s timber-based buildings, conceptualized as a “Second Forest” that transfers and preserves the carbon capture capacity of trees in the built environment. The analysis estimates that Santiago’s urban timber constructions have expanded their wood-built surface area by 192,831 m 2 over the past eight years, reflecting the growing adoption of timber in urban construction. During the same period, biogenic carbon storage increased from 199.78 kt to 202.73 kt, equivalent to 10.84 kt of CO 2 under average conditions. These findings highlight the potential of urban planning strategies, such as promoting taller timber buildings and adopting circular timber practices, to enhance carbon sequestration and reduce reliance on carbon-intensive materials. This research highlights the fundamental role that timber buildings play in urban climate change mitigation, positioning them as active contributors to global carbon management efforts.

Suggested Citation

  • Felipe Victorero & Waldo Bustamante, 2025. "Timber Biogenic Carbon Stock in the Urban Environment: Santiago City as a Second Forest," Sustainability, MDPI, vol. 17(2), pages 1-23, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:529-:d:1564977
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/2/529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/2/529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Lulu & Yu, Chang & Cheng, Baodong & Yang, Chao & Chang, Yuan, 2020. "Mitigating climate change by global timber carbon stock: Accounting, flow and allocation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. N. L. Stephenson & A. J. Das & R. Condit & S. E. Russo & P. J. Baker & N. G. Beckman & D. A. Coomes & E. R. Lines & W. K. Morris & N. Rüger & E. Álvarez & C. Blundo & S. Bunyavejchewin & G. Chuyong & , 2014. "Rate of tree carbon accumulation increases continuously with tree size," Nature, Nature, vol. 507(7490), pages 90-93, March.
    3. Kalcher, Jasmin & Praxmarer, Gabriel & Teischinger, Alfred, 2017. "Quantification of future availabilities of recovered wood from Austrian residential buildings," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 143-152.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Qingyuan & Xu, Chengzhen & Pan, Yinghao & Wu, Jie, 2024. "Identifying critical transmission sectors, paths, and carbon communities for CO2 mitigation in global supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Tie Zhang & Guijie Ding & Jiangping Zhang & Yujiao Qi, 2022. "Contributions of Biotic and Abiotic Factors to the Spatial Heterogeneity of Aboveground Biomass in Subtropical Forests: A Case Study of Guizhou Province," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    3. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    4. Xiaozhe Ma & Leying Wu & Yongbin Zhu & Jing Wu & Yaochen Qin, 2022. "Simulation of Vegetation Carbon Sink of Arbor Forest and Carbon Mitigation of Forestry Bioenergy in China," IJERPH, MDPI, vol. 19(20), pages 1-18, October.
    5. Carroll, Carlos & Noon, Barry & Masino, Susan & Noss, Reed F., 2024. "Effective Old-Growth Conservation Requires Coordinated Actions Across Scales of Space, Time, and Biodiversity," OSF Preprints c7fek, Center for Open Science.
    6. Lee, Christine & Schlemme, Claire & Murray, Jessica & Unsworth, Robert, 2015. "The cost of climate change: Ecosystem services and wildland fires," Ecological Economics, Elsevier, vol. 116(C), pages 261-269.
    7. Ohmura, Tamaki & Creutzburg, Leonard, 2021. "Guarding the For(es)t: Sustainable economy conflicts and stakeholder preference of policy instruments," Forest Policy and Economics, Elsevier, vol. 131(C).
    8. Upeksha Caldera & Christian Breyer, 2023. "Afforesting arid land with renewable electricity and desalination to mitigate climate change," Nature Sustainability, Nature, vol. 6(5), pages 526-538, May.
    9. Wencelito Palis Hintural & Hee-Gyu Woo & Hyeongwon Choi & Hyo-Lim Lee & HaSu Lim & Woo Bin Youn & Byung Bae Park, 2024. "Ecosystem Services Synergies and Trade-Offs from Tree Structural Perspectives: Implications for Effective Urban Green Space Management and Strategic Land Use Planning," Sustainability, MDPI, vol. 16(17), pages 1-21, September.
    10. Graves, Rose A. & Nielsen-Pincus, Max & Haugo, Ryan D. & Holz, Andrés, 2022. "Forest carbon incentive programs for non-industrial private forests in Oregon (USA): Impacts of program design on willingness to enroll and landscape-scale program outcomes," Forest Policy and Economics, Elsevier, vol. 141(C).
    11. Duncan Brack & Richard King, 2021. "Managing Land‐based CDR: BECCS, Forests and Carbon Sequestration," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 45-56, April.
    12. Xinxin Liao & Zhuo Ning, 2022. "Welfare Implications of Border Carbon Adjustments on the Trade of Harvested Wood Products," IJERPH, MDPI, vol. 20(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:529-:d:1564977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.