Author
Listed:
- İsmet Yener
(Department of Forest Engineering, Faculty of Forestry, Artvin Coruh University, Artvin 08100, Turkey)
Abstract
Accurate and precise prediction of actual evapotranspiration (AET) on a large scale is a fundamental issue in natural sciences such as forestry (especially in species selection and planning), hydrology, and agriculture. With the estimation of AET, controlling dams, agriculture, and irrigation and providing potable and utility water supply for industry would be possible. Gathering reliable AET data is possible only with a sufficient weather station network, which is rarely established in many countries like Turkey. Therefore, climate models must be developed for reliable AET data, especially in countries with complex terrains. This study aimed to generate spatiotemporal AET surfaces using the Australian National University spline (ANUSPLIN) model and compare the results with the maps generated by the inverse distance weighting (IDW) and co-kriging (KRG) interpolation techniques. Findings from the interpolated surfaces were validated in three ways: (1) some diagnostics from the surface fitting model include measures such as signal, mean, root mean square predictive error, root mean square error estimate, root mean square residual of the spline, and the estimated standard deviation of noise in the spline; (2) a comparison of common error statistics between the interpolated surfaces and withheld climate data; and (3) evaluation by comparing model results with other interpolation methods using metrics such as mean absolute error, mean error, root mean square error, and adjusted R 2 (R 2 adj ). The correlation between AET and normalized difference vegetation index (NDVI) was also evaluated. ANUSPLIN outperformed the other techniques, accounting for 73 to 94% (RMSE: 3.7 to 26.1%) of the seasonal variation in AET with an annual value of 83% (RMSE: 10.0%). The correlation coefficient between observed and predicted AET based on NDVI ranged from 0.49 to 0.71 for point-based and 0.62 to 0.83 for polygon-based data. The generated maps at a spatial resolution of 0.005° × 0.005° could provide valuable insights to researchers and practitioners in the natural resources management domain.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:430-:d:1562571. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.