Author
Listed:
- Kavitha Paulsamy
(Department of Electrical and Electronics Engineering, Government College of Engineering, Tirunelveli 627007, Tamilnadu, India)
- Subha Karuvelam
(Department of Electrical and Electronics Engineering, Government College of Engineering, Tirunelveli 627007, Tamilnadu, India)
Abstract
The significance of the Hybrid Renewable Energy System (HRES) is profound in the current scenario owing to the mounting energy requirements, pressing ecological concerns and the pursuit of transitioning to greener energy alternatives. Thereby, the modeling and design of HRES, encompassing PV–WECS–Battery, which mainly focuses on efficient power conversion and advanced control strategy, is proposed. The voltage gain of the PV system is improved using the Re-lift Luo converter, which offers high efficiency and power density with minimized ripples and power losses. Its voltage lift technique mitigates parasitic effects and delivers improved output voltage for grid synchronization. To control and stabilize the converter output, a Proportional–Integral (PI) controller tuned using a novel hybrid algorithm combining Grey Wolf Optimization (GWO) with Hermit Crab Optimization (HCO) is implemented. GWO follows the hunting and leadership characteristics of grey wolves for improved simplicity and robustness. By simulating the shell selection behavior of hermit crabs, the HCO adds diversity to exploitation. Due to these features, the hybrid GWO–HCO algorithm enhances the PI controller’s capability of handling dynamic non-linear systems, generating better control accuracy, and rapid convergence to optimal solutions. Considering the Wind Energy Conversion System (WECS), the PI controller assures improved stability despite fluctuations in wind. A Recurrent Neural Network (RNN)-based battery management system is also incorporated for accurate monitoring and control of the State of Charge (SoC) and the terminal voltage of battery storage. The simulation is conducted in MATLAB Simulink 2021a, and a lab-scale prototype is implemented for real-time validation. The Re-lift Luo converter achieves an efficiency of 97.5% and a voltage gain of 1:10 with reduced oscillations and faster settling time using a Hybrid GWO–HCO–PI controller. Moreover, the THD is reduced to 1.16%, which indicates high power quality and reduced harmonics.
Suggested Citation
Kavitha Paulsamy & Subha Karuvelam, 2024.
"Modeling and Design of a Grid-Tied Renewable Energy System Exploiting Re-Lift Luo Converter and RNN Based Energy Management,"
Sustainability, MDPI, vol. 17(1), pages 1-33, December.
Handle:
RePEc:gam:jsusta:v:17:y:2024:i:1:p:187-:d:1556209
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:187-:d:1556209. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.