IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2024i1p173-d1555817.html
   My bibliography  Save this article

Production and Characterization of First-Generation Bioethanol from Extracted Mesquite Pod ( Prosopis juliflora (Sw.) DC.) Broth

Author

Listed:
  • Manoel T. Leite Filho

    (National Institute of the Semiarid—INSA, Campina Grande 58432-570, Brazil)

  • Mário E. R. M. Cavalcanti-Mata

    (Department of Foods Engineering, Federal University of Campina Grande, Campina Grande 58429-140, Brazil)

  • Maria E. M. Duarte

    (Department of Foods Engineering, Federal University of Campina Grande, Campina Grande 58429-140, Brazil)

  • Alexandre S. Lúcio

    (Natural Resources Engineering and Management Postgraduate Program, Federal University of Campina Grande, Campina Grande 58429-140, Brazil)

  • Francisca M. Sousa

    (Natural Resources Engineering and Management Postgraduate Program, Federal University of Campina Grande, Campina Grande 58429-140, Brazil)

  • Mylena O. P. Melo

    (Natural Resources Engineering and Management Postgraduate Program, Federal University of Campina Grande, Campina Grande 58429-140, Brazil)

  • Jorge J. A. Martins

    (Natural Resources Engineering and Management Postgraduate Program, Federal University of Campina Grande, Campina Grande 58429-140, Brazil)

  • João M. P. Q. Delgado

    (CONSTRUCT-LFC, Civil Engineering Department, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

  • Antonio G. B. Lima

    (Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil)

Abstract

The mesquite tree ( Prosopis juliflora ) is cultivated across 500,000 hectares in the semi-arid region of Brazil, primarily aimed at recovering degraded areas in the northeastern part of the country, which represents 15.7% of the national territory. However, its economic potential remains underutilized. Mesquite pods are particularly rich in carbohydrates, making them a promising raw material for bioethanol production. This study investigates the production of first-generation bioethanol from mesquite pods as feedstock. Mature pods were sourced from local producers in Sumé Town, located in the Cariri Paraibano microregion of Brazil. Sugar extraction from the mesquite pods involved hydration followed by pressing, with the extracted juice adjusted to a pH of 4.3 and soluble solids (°Brix) concentrations corrected to 20, 18, and 16. The juice was then subjected to fermentation using different yeast strains (fresh yeast, granular yeast, and FLNF CA-11) at a concentration of 25 g L −1 . Alcoholic fermentation was carried out in a batch system, with measurements of cell concentration (biomass), soluble solids (°Brix), ethanol concentration (°GL), and pH taken at 2 h intervals over a 20 h period. The best physicochemical characterization of bioethanol was obtained using the LNF CA-11 yeast at 20 °Brix, producing a biofuel that met Brazilian legal standards set by the National Petroleum Agency (ANP). The bioethanol had a colorless appearance and was free of impurities, with a titratable acidity of 28.2 mg of acetic acid, electrical conductivity of 282.33 µS m −1 , a specific mass of 809 kg m −3 , an alcohol content of 95.5 °GL, a pH of 6.28, and no evaporation residue in 100 mL. Additionally, the highest bioethanol yield was achieved with broth fermented at 18 °Brix and LNF CA-11 yeast. These results highlight the potential of mesquite pods as a renewable energy alternative, especially relevant in the context of the global climate crisis; the growing need to reduce dependence on fossil fuels; and the need to reduce environmental problems; and they promote the added-value and use of this product.

Suggested Citation

  • Manoel T. Leite Filho & Mário E. R. M. Cavalcanti-Mata & Maria E. M. Duarte & Alexandre S. Lúcio & Francisca M. Sousa & Mylena O. P. Melo & Jorge J. A. Martins & João M. P. Q. Delgado & Antonio G. B. , 2024. "Production and Characterization of First-Generation Bioethanol from Extracted Mesquite Pod ( Prosopis juliflora (Sw.) DC.) Broth," Sustainability, MDPI, vol. 17(1), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:173-:d:1555817
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/1/173/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/1/173/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chong, Ting Yen & Cheah, Siang Aun & Ong, Chin Tye & Wong, Lee Yi & Goh, Chern Rui & Tan, Inn Shi & Foo, Henry Chee Yew & Lam, Man Kee & Lim, Steven, 2020. "Techno-economic evaluation of third-generation bioethanol production utilizing the macroalgae waste: A case study in Malaysia," Energy, Elsevier, vol. 210(C).
    2. Jain, Sanyam & Kumar, Shushil, 2024. "A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives," Energy, Elsevier, vol. 296(C).
    3. Naghshbandi, Mohammad Pooya & Tabatabaei, Meisam & Aghbashlo, Mortaza & Gupta, Vijai Kumar & Sulaiman, Alawi & Karimi, Keikhosro & Moghimi, Hamid & Maleki, Mina, 2019. "Progress toward improving ethanol production through decreased glycerol generation in Saccharomyces cerevisiae by metabolic and genetic engineering approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    2. Chung, Millicent Rosette Wan Yi & Tan, Inn Shi & Foo, Henry Chee Yew & Lam, Man Kee, 2022. "Exergy analysis of a biorefinery process for co-production of third-generation L-lactic acid and electricity from Eucheuma denticulatum residues," Energy, Elsevier, vol. 242(C).
    3. Lim, Yee Kai & Tan, Inn Shi & Foo, Henry Chee Yew & Tan, Yie Hua & Lam, Man Kee & Wong, Mee Kee, 2024. "Exergetic and exergoeconomic analyses of Eucheuma cottoni residue biorefinery for co-production of polylactic acid and electricity," Energy, Elsevier, vol. 300(C).
    4. Jain, Sanyam & Kumar, Shushil, 2024. "A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives," Energy, Elsevier, vol. 296(C).
    5. H K, Narendra Kumar & N, Chandra Mohana & H C, Amrutha & D, Rakshith & B P, Harini & Satish, S., 2023. "Biomass conversion through optimization of cellulase from Chryseobacterium junjuense Bp17 and their utility in bioethanol production," Energy, Elsevier, vol. 283(C).
    6. Qin, Shiwen & Hu, Faguang & Kong, Deting & Zhao, Tonghua & Suo, Yukai & He, Feifei, 2024. "Evaluation of a phenolic-tolerant Wickerhamomyces anomalus strain for efficient ethanol production based on omics analysis," Energy, Elsevier, vol. 311(C).
    7. Szulczyk, Kenneth R. & Tan, Yeng-May, 2022. "Economic feasibility and sustainability of commercial bioethanol from microalgal biomass: The case of Malaysia," Energy, Elsevier, vol. 253(C).
    8. Dixit, Yatika & Yadav, Preeti & Sharma, Arun Kumar & Pandey, Poornima & Kuila, Arindam, 2023. "Multiplex genome editing to construct cellulase engineered Saccharomyces cerevisiae for ethanol production from cellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    9. Adilson João Matias & Luiz Augusto Horta Nogueira & Eric Alberto Ocampo Batlle, 2024. "An Evaluation of the Land Available for Sustainable Sugarcane Cultivation and Potential for Producing Ethanol and Bioelectricity in Angola," Resources, MDPI, vol. 13(8), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:173-:d:1555817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.