Research on Image Perception of Tourist Destinations Based on the BERT-BiLSTM-CNN-Attention Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zheng Cao & Heng Xu & Brian Sheng-Xian Teo, 2023. "Sentiment of Chinese Tourists towards Malaysia Cultural Heritage Based on Online Travel Reviews," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
- Wen Zhang & Daniel R. Fesenmaier, 2018. "Assessing emotions in online stories: comparing self-report and text-based approaches," Information Technology & Tourism, Springer, vol. 20(1), pages 83-95, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fathe Jeribi & Shaik Rafi Ahamed & Uma Perumal & Mohammed Hameed Alhameed & Manjunatha Chari Kamsali, 2023. "Developing an MQ-LSTM-Based Cultural Tourism Accelerator with Database Security," Sustainability, MDPI, vol. 15(23), pages 1-20, November.
- Anna Dalla Vecchia & Sara Migliorini & Elisa Quintarelli & Mauro Gambini & Alberto Belussi, 2024. "Promoting sustainable tourism by recommending sequences of attractions with deep reinforcement learning," Information Technology & Tourism, Springer, vol. 26(3), pages 449-484, September.
- Manosso, Franciele Cristina & Domareski Ruiz, Thays Cristina, 2021. "Using sentiment analysis in tourism research: A systematic, bibliometric, and integrative review," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 16-27.
- Cristina Franciele & Thays Christina Domareski Ruiz, 2021. "Using sentiment analysis in tourism research: A systematic, bibliometric, and integrative review," Post-Print hal-03373984, HAL.
More about this item
Keywords
deep learning; tourism destination; image perception; Sanya; BERT; BiLSTM; CNN;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3464-:d:1379830. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.