IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3419-d1378678.html
   My bibliography  Save this article

The Catalytic Effect of Pt on Lignin Pyrolysis: A Reactive Molecular Dynamics Study

Author

Listed:
  • Weiming Zhan

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Kejiang Li

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Rita Khanna

    (School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
    Retired.)

  • Yuri Konyukhov

    (Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119049 Moscow, Russia)

  • Zeng Liang

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Yushan Bu

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Zhen Sun

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Chunhe Jiang

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Jianliang Zhang

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
    School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia)

Abstract

Lignin is the second-largest renewable resource in nature, second only to cellulose. Lignin is one of the most significant components of biomass, and it determines the behaviour of biomass in many thermochemical processes. However, limited studies have focused on the influence of metal catalysts on lignin pyrolysis. This study aims to develop a sustainable lignin catalytic pyrolysis technology to improve biomass energy-conversion efficiency, reduce dependence on fossil fuels, and promote the development of clean energy. In this study, the impact of Pt catalyst on the pyrolysis process of hardwood lignin was simulated by using reactive force field (ReaxFF) molecular dynamics. Through the comparison of the system without catalysts, the catalyst exhibited evident attraction to lignin macromolecules, prompting their decomposition at lower temperatures. Additionally, the catalyst has the strongest adsorption capacity for H radical. The activation energy of the reaction was calculated by kinetic analysis. It was found that the addition of catalysts significantly reduced the activation energy of the reaction. By revealing the effect of Pt catalyst on the lignin pyrolysis process, it provides a theoretical basis for biomass pyrolysis and the utilization of metal catalysts in industry.

Suggested Citation

  • Weiming Zhan & Kejiang Li & Rita Khanna & Yuri Konyukhov & Zeng Liang & Yushan Bu & Zhen Sun & Chunhe Jiang & Jianliang Zhang, 2024. "The Catalytic Effect of Pt on Lignin Pyrolysis: A Reactive Molecular Dynamics Study," Sustainability, MDPI, vol. 16(8), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3419-:d:1378678
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3419/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3419/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tungal, Richa & Shende, Rajesh V., 2014. "Hydrothermal liquefaction of pinewood (Pinus ponderosa) for H2, biocrude and bio-oil generation," Applied Energy, Elsevier, vol. 134(C), pages 401-412.
    2. Srirangan, Kajan & Akawi, Lamees & Moo-Young, Murray & Chou, C. Perry, 2012. "Towards sustainable production of clean energy carriers from biomass resources," Applied Energy, Elsevier, vol. 100(C), pages 172-186.
    3. Kim, Seok Ki & Han, Jae Young & Lee, Hong-shik & Yum, Taewoo & Kim, Yunje & Kim, Jaehoon, 2014. "Production of renewable diesel via catalytic deoxygenation of natural triglycerides: Comprehensive understanding of reaction intermediates and hydrocarbons," Applied Energy, Elsevier, vol. 116(C), pages 199-205.
    4. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xuesong & Lei, Hanwu & Zhu, Lei & Qian, Moriko & Zhu, Xiaolu & Wu, Joan & Chen, Shulin, 2016. "Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions," Applied Energy, Elsevier, vol. 173(C), pages 418-430.
    2. Kuo, Yen-Ting & Almansa, G. Aranda & Vreugdenhil, B.J., 2018. "Catalytic aromatization of ethylene in syngas from biomass to enhance economic sustainability of gas production," Applied Energy, Elsevier, vol. 215(C), pages 21-30.
    3. Chen, Jingwei & Wang, Chenxi & Shang, Wenxue & Bai, Yu & Wu, Xiaomin, 2023. "Study on the mechanisms of hydrogen production from alkali lignin gasification in supercritical water by ReaxFF molecular dynamics simulation," Energy, Elsevier, vol. 278(PA).
    4. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
    5. Nikolaos Detsios & Leda Maragoudaki & Stefano Rebecchi & Koen Quataert & Karel De Winter & Vassilis Stathopoulos & Nikolaos G. Orfanoudakis & Panagiotis Grammelis & Konstantinos Atsonios, 2024. "Techno-Economic Evaluation of Jet Fuel Production via an Alternative Gasification-Driven Biomass-to-Liquid Pathway and Benchmarking with the State-of-the-Art Fischer–Tropsch and Alcohol-to-Jet Concept," Energies, MDPI, vol. 17(7), pages 1-23, April.
    6. Xu, Junming & Jiang, Jianchun & Zhao, Jiaping, 2016. "Thermochemical conversion of triglycerides for production of drop-in liquid fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 331-340.
    7. Bauer, Fredric & Hulteberg, Christian, 2014. "Isobutanol from glycerine – A techno-economic evaluation of a new biofuel production process," Applied Energy, Elsevier, vol. 122(C), pages 261-268.
    8. Caspeta, Luis & Caro-Bermúdez, Mario A. & Ponce-Noyola, Teresa & Martinez, Alfredo, 2014. "Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol," Applied Energy, Elsevier, vol. 113(C), pages 277-286.
    9. Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.
    10. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    11. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Yukun Cao & Jingxuan Cai & Xiangyue Liu, 2024. "RETRACTED ARTICLE: Advancing toward a sustainable future: assessing the impact of energy transition, circular economy, and international trade on carbon footprint," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-26, April.
    13. Schipfer, Fabian & Kranzl, Lukas, 2019. "Techno-economic evaluation of biomass-to-end-use chains based on densified bioenergy carriers (dBECs)," Applied Energy, Elsevier, vol. 239(C), pages 715-724.
    14. Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
    15. Sastre, C.M. & Maletta, E. & González-Arechavala, Y. & Ciria, P. & Santos, A.M. & del Val, A. & Pérez, P. & Carrasco, J., 2014. "Centralised electricity production from winter cereals biomass grown under central-northern Spain conditions: Global warming and energy yield assessments," Applied Energy, Elsevier, vol. 114(C), pages 737-748.
    16. Arodudu, Oludunsin Tunrayo & Helming, Katharina & Voinov, Alexey & Wiggering, Hubert, 2017. "Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock," Applied Energy, Elsevier, vol. 198(C), pages 426-439.
    17. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Ebrahimian, Farinaz & Karimi, Keikhosro & Angelidaki, Irini, 2022. "Coproduction of hydrogen, butanol, butanediol, ethanol, and biogas from the organic fraction of municipal solid waste using bacterial cocultivation followed by anaerobic digestion," Renewable Energy, Elsevier, vol. 194(C), pages 552-560.
    19. Budzianowski, Wojciech M. & Postawa, Karol, 2016. "Total Chain Integration of sustainable biorefinery systems," Applied Energy, Elsevier, vol. 184(C), pages 1432-1446.
    20. Ding, Mingyue & Yang, Yong & Li, Yongwang & Wang, Tiejun & Ma, Longlong & Wu, Chuangzhi, 2013. "Impact of H2/CO ratios on phase and performance of Mn-modified Fe-based Fischer Tropsch synthesis catalyst," Applied Energy, Elsevier, vol. 112(C), pages 1241-1246.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3419-:d:1378678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.