IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3392-d1378043.html
   My bibliography  Save this article

Innovative Solar Dryer for Sustainable Aloe Vera Gel Preservation in Colombia

Author

Listed:
  • Oscar Ariza

    (Department of Electronic Engineering, Pontificia Universidad Javeriana, Bogotá 110311, Colombia)

  • Ingrid Casallas

    (Department of Electronic Engineering, Pontificia Universidad Javeriana, Bogotá 110311, Colombia)

  • Arturo Fajardo

    (Department of Electronic Engineering, Pontificia Universidad Javeriana, Bogotá 110311, Colombia)

Abstract

Aloe Barbadensis Miller , commonly known as Aloe vera, has been widely used in different applications, such as medicinal treatments and cosmetic products. However, its transportation and handling present challenges due to oxidation and property loss caused by direct environmental exposure. A strategy to mitigate these effects is dehydration, where different industrial-scale methods such as freeze-drying, spraying, refractory windows, and convective drying can be applied. Despite their effectiveness, those dehydration techniques are both energetically and economically costly. Solar drying technology offers a cost-effective, lower-energy alternative addressing sustainability, socioeconomic, scientific progress, and integrated sustainable development challenges. Nevertheless, solar drying through direct sunlight exposure has been minimally explored for drying high-water-content products like Aloe vera, potentially due to the inherent challenges of drying under uncontrolled environmental conditions. In response, this paper introduces a methodology for pre-treating and pre-drying Aloe vera gel using a low-cost solar dryer prototype, achieving up to 50% water activity reduction in experimental tests under uncontrolled conditions in Colombia, South America. The proposed prototype features a drying cabinet with energy autonomy and forced convection. The experimental evaluation compares the quality of pre-dried Aloe vera gel with freeze-dried samples, demonstrating comparable attributes under favorable environmental conditions. The results demonstrate the feasibility of pre-drying Aloe vera gel within 13 to 48 h, with a maximum drying rate of 0.38 g/min. During this process, water activity decreased from an initial value of 0.975 to a final value ranging between 0.472 and 0.748. Furthermore, the quality of the dehydrated gel was assessed through color analysis, comparing it with a freeze-dried sample. Subsequent color analysis of the freeze-dried samples revealed minor changes in product quality compared to those dried using the proposed solar drying method. These results demonstrate the effectiveness of the proposed solar dryer in pre-dehydrating Aloe vera gel, yielding characteristics similar to those achieved through conventional methods.

Suggested Citation

  • Oscar Ariza & Ingrid Casallas & Arturo Fajardo, 2024. "Innovative Solar Dryer for Sustainable Aloe Vera Gel Preservation in Colombia," Sustainability, MDPI, vol. 16(8), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3392-:d:1378043
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3392/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3392/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fudholi, A. & Sopian, K. & Ruslan, M.H. & Alghoul, M.A. & Sulaiman, M.Y., 2010. "Review of solar dryers for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 1-30, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    2. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.
    4. Boroze, Tchamye & Desmorieux, Hélène & Méot, Jean-Michel & Marouzé, Claude & Azouma, Yaovi & Napo, Kossi, 2014. "Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1240-1259.
    5. Gupta, Varun Kumar & Kumar, Sanjay & Kukreja, Rajeev & Chander, Nikhil, 2023. "Experimental thermal performance investigation of a direct absorption solar collector using hybrid nanofluid of gold nanoparticles with natural extract of Azadirachta Indica leaves," Renewable Energy, Elsevier, vol. 202(C), pages 1021-1031.
    6. Yataganbaba, Alptug & Kurtbaş, İrfan, 2016. "A scientific approach with bibliometric analysis related to brick and tile drying: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 206-224.
    7. Rabha, D.K., 2021. "Performance investigation of a passive-cum-active dryer with a biomass-fired heater integrated with a plate heat exchanger," Renewable Energy, Elsevier, vol. 169(C), pages 598-607.
    8. Ibrahim, Adnan & Othman, Mohd Yusof & Ruslan, Mohd Hafidz & Mat, Sohif & Sopian, Kamaruzzaman, 2011. "Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 352-365, January.
    9. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2012. "Greener energy: Issues and challenges for Pakistan—Solar energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2762-2780.
    10. Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.
    11. Fudholi, Ahmad & Zohri, Muhammad & Rukman, Nurul Shahirah Binti & Nazri, Nurul Syakirah & Mustapha, Muslizainun & Yen, Chan Hoy & Mohammad, Masita & Sopian, Kamaruzzaman, 2019. "Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 44-51.
    12. Sabiha, M.A. & Saidur, R. & Mekhilef, Saad & Mahian, Omid, 2015. "Progress and latest developments of evacuated tube solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1038-1054.
    13. Luis Bernardo López-Sosa & José Núñez-González & Alberto Beltrán & Mario Morales-Máximo & Mario Morales-Sánchez & Montserrat Serrano-Medrano & Carlos A. García, 2019. "A New Methodology for the Development of Appropriate Technology: A Case Study for the Development of a Wood Solar Dryer," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    14. Desikan Ramesh & Mohanrangan Chandrasekaran & Raga Palanisamy Soundararajan & Paravaikkarasu Pillai Subramanian & Vijayakumar Palled & Deivasigamani Praveen Kumar, 2022. "Solar-Powered Plant Protection Equipment: Perspective and Prospects," Energies, MDPI, vol. 15(19), pages 1-21, October.
    15. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    16. Raman, P. & Murali, J. & Sakthivadivel, D. & Vigneswaran, V.S., 2012. "Opportunities and challenges in setting up solar photo voltaic based micro grids for electrification in rural areas of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3320-3325.
    17. Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
    18. Janjai, Serm & Intawee, Poolsak & Kaewkiew, Jinda & Sritus, Chanoke & Khamvongsa, Vathsana, 2011. "A large-scale solar greenhouse dryer using polycarbonate cover: Modeling and testing in a tropical environment of Lao People’s Democratic Republic," Renewable Energy, Elsevier, vol. 36(3), pages 1053-1062.
    19. Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).
    20. Hao, Wengang & Lu, Yifeng & Lai, Yanhua & Yu, Hongwen & Lyu, Mingxin, 2018. "Research on operation strategy and performance prediction of flat plate solar collector with dual-function for drying agricultural products," Renewable Energy, Elsevier, vol. 127(C), pages 685-696.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3392-:d:1378043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.