Author
Listed:
- Nontobeko Gloria Maphuhla
(Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa)
- Opeoluwa Oyehan Oyedeji
(Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa)
Abstract
The rise in contaminated sites presents a significant issue for the environment and human health, necessitating the decontamination of the surroundings and the adoption of effective decontamination strategies. This investigation was initiated to assess the potential aspects of Acacia karroo in conjunction with enzyme activity, a method that shows promise for mitigating soil contamination. Acacia karroo , with its hyperaccumulator traits, demonstrates great capacity. Enzymes significantly efficiently convert and detoxify harmful substances to a non-toxic level. ICP-MS quantified the concentrations of trace elements in Acacia karroo , while colorimetric assays were used to determine the activity levels of the enzymes. Ten toxic elements were identified in leaf samples of Acacia karroo in the following sequence: Sr > Zn > Cr > V > Rb > Cu > Ni > Y > Sc > Co; concentrations ranged between 203.86 ± 4.48 ppm (Zn) and 10.12 ± 0.09 ppm (Sc). The concentration of these metals was very high, posing a potential risk of harming the environment. Meanwhile, the three identified enzymes, invertase (INV), phosphatase (PHO), and catalase (CAT), have high and average activity levels, respectively. PHO and CAT showed a positive correlation with Zn, Rb, Sr, and Y, while INV correlated positively with Sc, V, Cr, Co, Cu, and Ni content. The principal component analysis (PCA) findings in this study demonstrated an inconclusive correlation between soil enzyme activity and soil heavy metal content. Both positive and negative correlations between soil enzyme activity and heavy metals were observed. This investigation revealed Acacia karroo as an optimal botanical species for phytoremediation. Consequently, a correlation analysis demonstrated that incorporating the Acacia karroo species along with enzyme activity seems to be a highly promising environmentally friendly technique for remediating soil pollution. The Acacia species can also be used in phytoremediation efforts to help conserve biodiversity. Subsequent investigations should focus on the operational mechanisms of different plant parts used as herbal remedies, isolated compounds, their efficacy, adverse effects, and practical implications.
Suggested Citation
Nontobeko Gloria Maphuhla & Opeoluwa Oyehan Oyedeji, 2024.
"Evaluation of Acacia karroo’s Potential Aspect in the Phytoremediation of Soil Pollution,"
Sustainability, MDPI, vol. 16(8), pages 1-13, April.
Handle:
RePEc:gam:jsusta:v:16:y:2024:i:8:p:3315-:d:1376313
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3315-:d:1376313. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.