IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3260-d1375281.html
   My bibliography  Save this article

Spatiotemporal Heterogeneous Responses of Ecosystem Services to Landscape Patterns in Urban–Suburban Areas

Author

Listed:
  • Xinyan Zou

    (College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Chen Wang

    (Fujian Geologic Surveying and Mapping Institute, Fuzhou 350000, China)

  • Xiang Que

    (College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    Department of Computer Science, University of Idaho, Moscow, ID 83844, USA)

  • Xiaogang Ma

    (Department of Computer Science, University of Idaho, Moscow, ID 83844, USA)

  • Zhe Wang

    (Department of Computer Science, University of Idaho, Moscow, ID 83844, USA)

  • Quanli Fu

    (College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    Fujian Statistical Information Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Yuting Lai

    (College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    Fujian Statistical Information Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Xinhan Zhuang

    (College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    Fujian Statistical Information Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

Abstract

With the acceleration of urbanization, the ecosystem around cities is facing severe challenges. The drastic changes in the landscape pattern, especially in urban–suburban areas, are usually regarded as one of the main drivers. However, the spatiotemporal heterogeneous impacts of landscape patterns on the ecosystem services in this region remain unclear. To address this issue, we propose a novel framework integrating the InVEST-based ecosystem service assessment and spatiotemporal weighted regression (STWR)-based analysis of the spatiotemporal heterogeneity in urban–suburban areas, and apply it to the empirical study of Fuzhou City from 2000 to 2020. It first utilized the InVEST model to build a comprehensive ecosystem service index (CES) from five aspects (i.e., habitat quality, carbon storage, water yield, soil retention, and water purification capacity). Then, four landscape pattern indices (LPIs) (i.e., patch density (PD), area-weighted mean fractal dimension (FRAC_AM), splitting (SPLIT), and Shannon’s diversity (SHDI) index) were selected to build the STWR model. We compared and analyzed the differences in the spatial coefficient surfaces and significance tests generated by the STWR model in urban, urban–suburban, and rural areas. Results show that the following: (1) The CES in Fuzhou shows an upward trend from the urban area to the urban–suburban and rural areas, with significant gradient differences. (2) Compared with other areas, the LPIs in urban–suburban areas show more fragmentation, discreteness, and diversity, indicating more socioeconomic activities. (3) Although LPIs’ impacts on CES change over time (increasing from 2005 to 2010 and 2020 but decreasing in 2015), their effects are relatively low in urban–suburban areas, significantly lower than in urban areas. (4) Interestingly, the LPI coefficients near the urban–suburban boundary seem more significant. (5) This framework can effectively reveal the spatiotemporal heterogeneous relationships between various LPIs and CES, thus guiding concrete policies and measures that support decision-making for improving the ecosystem services surrounding cities through shaping landscape patterns.

Suggested Citation

  • Xinyan Zou & Chen Wang & Xiang Que & Xiaogang Ma & Zhe Wang & Quanli Fu & Yuting Lai & Xinhan Zhuang, 2024. "Spatiotemporal Heterogeneous Responses of Ecosystem Services to Landscape Patterns in Urban–Suburban Areas," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3260-:d:1375281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3260/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3260/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xinyu Zhang & Huawei Li & Hua Xia & Guohang Tian & Yuxing Yin & Yakai Lei & Gunwoo Kim, 2021. "The Ecosystem Services Value Change and Its Driving Forces Responding to Spatio-Temporal Process of Landscape Pattern in the Co-Urbanized Area," Land, MDPI, vol. 10(10), pages 1-21, October.
    2. Feiyan Zhang & Yonggang Gao, 2023. "Study on Temporal and Spatial Characteristics of Fuzhou Built-Up Area Based on Remote Sensing Data of Nighttime Light," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    3. Luwen Liu & Xingrong Chen & Wanxu Chen & Xinyue Ye, 2020. "Identifying the Impact of Landscape Pattern on Ecosystem Services in the Middle Reaches of the Yangtze River Urban Agglomerations, China," IJERPH, MDPI, vol. 17(14), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian Zuo & Yong Zhou & Jingyi Liu, 2022. "Construction and Optimization Strategy of an Ecological Network in Mountainous Areas: A Case Study in Southwestern Hubei Province, China," IJERPH, MDPI, vol. 19(15), pages 1-27, August.
    2. Ruiqi Zhang & Chunguang Hu & Yucheng Sun, 2024. "Decoding the Characteristics of Ecosystem Services and the Scale Effect in the Middle Reaches of the Yangtze River Urban Agglomeration: Insights for Planning and Management," Sustainability, MDPI, vol. 16(18), pages 1-26, September.
    3. Damien Sinonmatohou Tiando & Shougeng Hu & Xin Fan & Muhammad Rashid Ali, 2021. "Tropical Coastal Land-Use and Land Cover Changes Impact on Ecosystem Service Value during Rapid Urbanization of Benin, West Africa," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    4. Ji Zhang & Zelin Liu & Yu Shi & Ziying Zou, 2022. "Spatial Response of Ecosystem Service Value to Urbanization in Fragile Vegetation Areas Based on Terrain Gradient," IJERPH, MDPI, vol. 19(22), pages 1-15, November.
    5. Haoran Wang & Mengdi Zhang & Chuanying Wang & Kaiyue Wang & Chen Wang & Yang Li & Xiuling Bai & Yunkai Zhou, 2022. "Spatial and Temporal Changes of Landscape Patterns and Their Effects on Ecosystem Services in the Huaihe River Basin, China," Land, MDPI, vol. 11(4), pages 1-19, April.
    6. Jing Li & Jian Qiu & Majid Amani-Beni & Yuyang Wang & Mian Yang & Juewen Chen, 2023. "A Modified Equivalent Factor Method Evaluation Model Based on Land Use Changes in Tianfu New Area," Land, MDPI, vol. 12(7), pages 1-22, July.
    7. Hengkang Zhao & Xinyu Zhang & Wenqi Lu & Chenlin Wei & Dan He & Yakai Lei & Klaudia Borowiak, 2024. "Spatiotemporal Changes and Driving Mechanisms of Ecosystem Service Supply–Demand Contradictions Under Urbanization," Land, MDPI, vol. 13(11), pages 1-22, November.
    8. Longyun Deng & Yi Li & Zhi Cao & Ruifang Hao & Zheye Wang & Junxiao Zou & Quanyuan Wu & Jianmin Qiao, 2022. "Revealing Impacts of Human Activities and Natural Factors on Dynamic Changes of Relationships among Ecosystem Services: A Case Study in the Huang-Huai-Hai Plain, China," IJERPH, MDPI, vol. 19(16), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3260-:d:1375281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.