IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p2030-d1348995.html
   My bibliography  Save this article

Aesthetic and Thermal Suitability of Highly Glazed Spaces with Interior Roller Blinds in Najran University Buildings, Saudi Arabia

Author

Listed:
  • Abdultawab M. Qahtan

    (Architectural Engineering Department, College of Engineering, Najran University, Najran 66246, Saudi Arabia)

Abstract

Highly glazed spaces are visually appealing and trendy, but effectively managing their temperature in hot arid climates remains a significant challenge. This study evaluates the effectiveness of dark-tinted double low-E glass with internal roller blinds in reducing heat gain in glazed spaces in hot arid climates and investigates architects’ perspectives on these facades. It combines field measurements and a survey to assess the balance between thermal control and aesthetics in such environments. This study reveals that the current glazing significantly attenuates solar radiation ingress, evidenced by a marked indoor-–outdoor temperature differential (ΔT) of approximately 9.2 °C. The mean radiant temperature registers at 1.5 °C above the indoor air temperature, which can be attributed to the glazing’s propensity to absorb and retain solar heat, resulting in an inner glass surface temperature of 43 °C. The implementation of adjustable blinds has a dynamic influence on the heat transfer coefficient (HTC), effectively modulating the temperature by impeding natural convection currents. With the blinds retracted, the HTC stands at an average of 7.1 W/m 2 K, which diminishes to 5 W/m 2 K when the blinds are 50% closed and further reduces to 4.2 W/m 2 K when the blinds are fully closed (100%). Survey results suggest that architects prioritise glazed facades for aesthetics (52%) while facing challenges in thermal and energy efficiency (44%). Future studies should concentrate on developing novel glazing systems that integrate solutions for visual appeal, lighting and thermal efficiency in glazed facades, particularly in hot arid climates.

Suggested Citation

  • Abdultawab M. Qahtan, 2024. "Aesthetic and Thermal Suitability of Highly Glazed Spaces with Interior Roller Blinds in Najran University Buildings, Saudi Arabia," Sustainability, MDPI, vol. 16(5), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2030-:d:1348995
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/2030/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/2030/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao, Yao & Zhang, Haihua & Huang, Dongmei & Fan, Chuangang & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double skin façade with low-e glazing," Energy, Elsevier, vol. 229(C).
    2. Saman Abolghasemi Moghaddam & Catarina Serra & Manuel Gameiro da Silva & Nuno Simões, 2023. "Comprehensive Review and Analysis of Glazing Systems towards Nearly Zero-Energy Buildings: Energy Performance, Thermal Comfort, Cost-Effectiveness, and Environmental Impact Perspectives," Energies, MDPI, vol. 16(17), pages 1-30, August.
    3. Krarti, Moncef & Dubey, Kankana & Howarth, Nicholas, 2017. "Evaluation of building energy efficiency investment options for the Kingdom of Saudi Arabia," Energy, Elsevier, vol. 134(C), pages 595-610.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia," Applied Energy, Elsevier, vol. 290(C).
    2. Tao, Yao & Yan, Yihuan & Tu, Jiyuan & Shi, Long, 2024. "Impact of wind on solar-induced natural ventilation through double-skin facade," Applied Energy, Elsevier, vol. 364(C).
    3. Wahhaj Ahmed & Ayman Alazazmeh & Muhammad Asif, 2022. "Energy and Water Saving Potential in Commercial Buildings: A Retrofit Case Study," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    4. Michel Noussan & Benedetto Nastasi, 2018. "Data Analysis of Heating Systems for Buildings—A Tool for Energy Planning, Policies and Systems Simulation," Energies, MDPI, vol. 11(1), pages 1-15, January.
    5. Aldubyan, Mohammad & Krarti, Moncef, 2022. "Impact of stay home living on energy demand of residential buildings: Saudi Arabian case study," Energy, Elsevier, vol. 238(PA).
    6. Ahmed, Wahhaj & Asif, Muhammad, 2021. "A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Loucas Georgiou & Nicholas Afxentiou & Paris A. Fokaides, 2023. "Numerical Investigation of a Novel Controlled-Temperature Double-Skin Façade (DSF) Building Element," Energies, MDPI, vol. 16(4), pages 1-20, February.
    8. Jawed Mustafa & Fahad Awjah Almehmadi & Saeed Alqaed & Mohsen Sharifpur, 2022. "Building a Sustainable Energy Community: Design and Integrate Variable Renewable Energy Systems for Rural Communities," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    9. Belaïd, Fateh & Massié, Camille, 2023. "The viability of energy efficiency in facilitating Saudi Arabia's journey toward net-zero emissions," Energy Economics, Elsevier, vol. 124(C).
    10. Tao, Yao & Yan, Yihuan & Chew, Michael Yit Lin & Tu, Jiyuan & Shi, Long, 2023. "A theoretical model of natural ventilation enhanced by solar thermal energy in double-skin façade," Energy, Elsevier, vol. 276(C).
    11. Tao, Yao & Fang, Xiang & Chew, Michael Yit Lin & Zhang, Lihai & Tu, Jiyuan & Shi, Long, 2021. "Predicting airflow in naturally ventilated double-skin facades: theoretical analysis and modelling," Renewable Energy, Elsevier, vol. 179(C), pages 1940-1954.
    12. Krarti, Moncef & Dubey, Kankana & Howarth, Nicholas, 2019. "Energy productivity analysis framework for buildings: a case study of GCC region," Energy, Elsevier, vol. 167(C), pages 1251-1265.
    13. Andrew Adewale Alola, 2021. "Evidence of speculative bubbles and regime switch in real estate market and crude oil price: Insight from Saudi Arabia," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3473-3483, July.
    14. Al-Awsh, Waleed A. & Qasem, Naef A.A. & Al-Amoudi, Omar S. Baghabra & Al-Osta, Mohammed A., 2020. "Experimental and numerical investigation on innovative masonry walls for industrial and residential buildings," Applied Energy, Elsevier, vol. 276(C).
    15. Huang, Youbo & Liu, Xi & Shi, Long & Dong, Bingyan & Zhong, Hua, 2023. "Enhancing solar chimney performance in urban tunnels: Investigating the impact factors through experimental and theoretical model analysis," Energy, Elsevier, vol. 282(C).
    16. Aiman Mohammed & Muhammad Atiq Ur Rehman Tariq & Anne Wai Man Ng & Zeeshan Zaheer & Safwan Sadeq & Mahmood Mohammed & Hooman Mehdizadeh-Rad, 2022. "Reducing the Cooling Loads of Buildings Using Shading Devices: A Case Study in Darwin," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    17. Moncef Krarti, 2019. "Evaluation of Energy Efficiency Potential for the Building Sector in the Arab Region," Energies, MDPI, vol. 12(22), pages 1-45, November.
    18. Atef Ahriz & Abdelhakim Mesloub & Leila Djeffal & Badr M. Alsolami & Aritra Ghosh & Mohamed Hssan Hassan Abdelhafez, 2022. "The Use of Double-Skin Façades to Improve the Energy Consumption of High-Rise Office Buildings in a Mediterranean Climate (Csa)," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    19. Mohammad AlHashmi & Gyan Chhipi-Shrestha & Rajeev Ruparathna & Kh Md Nahiduzzaman & Kasun Hewage & Rehan Sadiq, 2021. "Energy Performance Assessment Framework for Residential Buildings in Saudi Arabia," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
    20. Wu, Yongjia & Gao, Yahui & Wang, Caixia & Chen, Qiong & Ming, Tingzhen, 2023. "The energy saving performance of the thermal diode composite wall in different climate regions," Renewable Energy, Elsevier, vol. 219(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2030-:d:1348995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.