IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i4p1630-d1339761.html
   My bibliography  Save this article

The Performance and Feasibility of Solar-Powered Desalination for Brackish Groundwater in Egypt

Author

Listed:
  • Mohamed A. Dawoud

    (Environment Agency Abu Dhabi, Abu Dhabi P.O. Box 45553, United Arab Emirates)

  • Ghada R. Sallam

    (Faculty of Engineering at Shoubra, Benha University, Benha 13511, Egypt)

  • Mohamed A. Abdelrahman

    (Faculty of Engineering at Shoubra, Benha University, Benha 13511, Egypt)

  • Mohamed Emam

    (Faculty of Engineering at Shoubra, Benha University, Benha 13511, Egypt)

Abstract

With a deficit of about 20 BCM in 2022, Egypt faces a severe water shortage due to rapid population growth (109.3 million in 2022). Egypt launched a program to utilize non-conventional water sources, like treated wastewater, agriculture drainage water, and desalination. Egypt is expanding its non-conventional water resources, boosting desalination capacity from 86,000 m 3 /day in 2015 to 680,000 m 3 /day in 2022, with plans to reach 1,250,000 m 3 /day by 2025. Despite the improvements in desalination technologies and cost, its high energy use and environmental impacts are still limiting its use. Egypt’s desalination relies on grid electricity, but renewable energy is crucial for remote areas where no electricity grid exists. Scaling up renewable energy in desalination faces challenges like land availability and high costs. GIS was used for optimal site selection for a brackish groundwater solar desalination plant in the Western North Nile Delta. Factors like solar radiation, groundwater quality, aquifer potentiality, geology, and seawater intrusion were carefully assessed. An evaluation of a sustainable 1000 m 3 /day solar-powered RO desalination pilot plant’s economic and technical viability is provided, along with its performance assessment. Limitations, challenges, and potential improvements are discussed. The study finds that RO–PV desalination for brackish groundwater is technically mature, with competitive Capex costs (USD 760-USD 850/m 3 ) and low Opex (USD 0.55–USD 0.63/m 3 ). Solar desalination for brackish groundwater with salinity less than 23,000 ppm can reduce energy consumption to 3.6–4.2 kWhr/m 3 . Water storage and hybrid systems with solar and conventional energy are suggested to enhance efficiency. This implies a growing market for small- to medium-scale RO solar-powered desalination in remote areas in the near future.

Suggested Citation

  • Mohamed A. Dawoud & Ghada R. Sallam & Mohamed A. Abdelrahman & Mohamed Emam, 2024. "The Performance and Feasibility of Solar-Powered Desalination for Brackish Groundwater in Egypt," Sustainability, MDPI, vol. 16(4), pages 1-23, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1630-:d:1339761
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/4/1630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/4/1630/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eltawil, Mohamed A. & Zhengming, Zhao & Yuan, Liqiang, 2009. "A review of renewable energy technologies integrated with desalination systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2245-2262, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kabeel, A.E. & Elmaaty, Talal Abou & El-Said, Emad M.S., 2013. "Economic analysis of a small-scale hybrid air HDH–SSF (humidification and dehumidification–water flashing evaporation) desalination plant," Energy, Elsevier, vol. 53(C), pages 306-311.
    2. Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
    3. Mito, Mohamed T. & Ma, Xianghong & Albuflasa, Hanan & Davies, Philip A., 2019. "Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 669-685.
    4. Mentis, Dimitrios & Karalis, George & Zervos, Arthouros & Howells, Mark & Taliotis, Constantinos & Bazilian, Morgan & Rogner, Holger, 2016. "Desalination using renewable energy sources on the arid islands of South Aegean Sea," Energy, Elsevier, vol. 94(C), pages 262-272.
    5. Prado de Nicolás, Amanda & Molina-García, Ángel & García-Bermejo, Juan Tomás & Vera-García, Francisco, 2023. "Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    6. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    7. Gude, Veera Gnaneswar, 2016. "Geothermal source potential for water desalination – Current status and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1038-1065.
    8. Mattheus Goosen & Hacene Mahmoudi & Noreddine Ghaffour, 2010. "Water Desalination Using Geothermal Energy," Energies, MDPI, vol. 3(8), pages 1-20, August.
    9. Francisco Berenguel-Felices & Antonio Lara-Galera & María Belén Muñoz-Medina, 2020. "Requirements for the Construction of New Desalination Plants into a Framework of Sustainability," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    10. Manju, S. & Sagar, Netramani, 2017. "Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 594-609.
    11. Ba-Alawi, Abdulrahman H. & Nguyen, Hai-Tra & Yoo, ChangKyoo, 2024. "Coordinated operation for a resilient and green energy-water supply system: A co-optimization approach with flexible strategies," Energy, Elsevier, vol. 304(C).
    12. Khah, Mohammad Vahabi & Zahedi, Rahim & Mousavi, Mohammad Sadegh & Ahmadi, Abolfazl, 2023. "Forecasting renewable energy utilization by Iran's water and wastewater industries," Utilities Policy, Elsevier, vol. 82(C).
    13. Schmitt, Rafael Jan Pablo & Rosa, Lorenzo, 2024. "Dams for hydropower and irrigation: Trends, challenges, and alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Li, Sheying & Cai, Yang-Hui & Schäfer, Andrea I. & Richards, Bryce S., 2019. "Renewable energy powered membrane technology: A review of the reliability of photovoltaic-powered membrane system components for brackish water desalination," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. El-Ghonemy, A.M.K., 2012. "Future sustainable water desalination technologies for the Saudi Arabia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6566-6597.
    16. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    17. Schäfer, Andrea I. & Hughes, Gordon & Richards, Bryce S., 2014. "Renewable energy powered membrane technology: A leapfrog approach to rural water treatment in developing countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 542-556.
    18. Ward, Frank A., 2023. "Innovations for the Water Resource Economics Curriculum: Training the Next Generation," Applied Economics Teaching Resources (AETR), Agricultural and Applied Economics Association, vol. 5(3), September.
    19. Arunkumar, T. & Jayaprakash, R. & Ahsan, Amimul & Denkenberger, D. & Okundamiya, M.S., 2013. "Effect of water and air flow on concentric tubular solar water desalting system," Applied Energy, Elsevier, vol. 103(C), pages 109-115.
    20. Georgiou, Dimitris & Mohammed, Essam Sh. & Rozakis, Stelios, 2015. "Multi-criteria decision making on the energy supply configuration of autonomous desalination units," Renewable Energy, Elsevier, vol. 75(C), pages 459-467.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1630-:d:1339761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.