IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i3p1147-d1329153.html
   My bibliography  Save this article

How Do the Dynamics of Urbanization Affect the Thermal Environment? A Case from an Urban Agglomeration in Lower Gangetic Plain (India)

Author

Listed:
  • Arijit Das

    (Department of Geography, University of Gour Banga, Malda 732103, India)

  • Priyakshi Saha

    (Department of Geography, University of Gour Banga, Malda 732103, India)

  • Rajarshi Dasgupta

    (School of Public Policy, IIT Delhi, Hauz Khas, New Delhi 110016, India)

  • Miguel Inacio

    (Environmental Management Laboratory, Mykolas Romeris University, Atheties St. 20, LT-08303 Vilnius, Lithuania)

  • Manob Das

    (Department of Geography, University of Gour Banga, Malda 732103, India)

  • Paulo Pereira

    (Environmental Management Laboratory, Mykolas Romeris University, Atheties St. 20, LT-08303 Vilnius, Lithuania)

Abstract

Urban growth and development has significantly affected urban heat island (UHI) due to urbanization. Particularly in the cities in developing countries, the assessment of UHI has emerged as one of the core research themes as it significantly affects the ecological environment and livability in cities. Thus, the assessment of UHI is crucial for climate mitigation and sustainable urban landscape planning. This study identifies the dynamics of landscape patterns and the impact of composition and configuration on the thermal environment in English Bazar Urban Agglomeration (EBUA), Eastern India, along the urban–rural gradient (URG) approach. Geospatial approaches and spatial metrics were employed to assess the impact of the landscape pattern on the thermal environment. Descriptive and inferential statistics have also been used to find the effects of landscape patterns on the thermal environment. The result has also been validated based on the location and correlation analysis. The built-up area increased by about 63.54%; vegetation covers and water bodies declined by 56.72% and 67.99% from 2001 to 2021. Land surface temperature (LST) decreased with increasing distance from the core of the city. LST declined by about 0.45 °C per kilometer from the core of the city towards the outside. LST had a positive correlation with IS and a negative correlation with green space (GS) and blue space (BS). The mean aggregation of the impervious patches was larger (73.21%) than the GS (43.18%) and BS (49.02%). The aggregation of impervious surface (IS) was positively correlated, and aggregations of GS and BS had a negative correlation with LST. Findings suggest that the spatial composition and configuration of the impervious surface, GS, and BS must be considered in landscape planning and design framework to make the city more livable.

Suggested Citation

  • Arijit Das & Priyakshi Saha & Rajarshi Dasgupta & Miguel Inacio & Manob Das & Paulo Pereira, 2024. "How Do the Dynamics of Urbanization Affect the Thermal Environment? A Case from an Urban Agglomeration in Lower Gangetic Plain (India)," Sustainability, MDPI, vol. 16(3), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1147-:d:1329153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/3/1147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/3/1147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    2. Abdul Munaf Mohamed Irfeey & Hing-Wah Chau & Mohamed Mahusoon Fathima Sumaiya & Cheuk Yin Wai & Nitin Muttil & Elmira Jamei, 2023. "Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    3. repec:asg:wpaper:1039 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manh, Tran Dinh & Jafaryar, M. & Hamad, Samir Mustafa & Barzinjy, Azeez A. & Shafee, Ahmad & Abohamzeh, Elham & Tlili, Iskander, 2020. "Nanoparticles hydrothermal simulation in a pipe with insertion of compound turbulator analyzing entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    2. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    3. Ning Li & Yuxiang Tian & Biao Ma & Dongxia Hu, 2022. "Experimental Investigation of Water-Retaining and Mechanical Behaviors of Unbound Granular Materials under Infiltration," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    4. Jaykumar Joshi & Akhilesh Magal & Vijay S. Limaye & Prima Madan & Anjali Jaiswal & Dileep Mavalankar & Kim Knowlton, 2022. "Climate change and 2030 cooling demand in Ahmedabad, India: opportunities for expansion of renewable energy and cool roofs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-17, October.
    5. Manh, Tran Dinh & Tlili, I. & Shafee, Ahmad & Nguyen-Thoi, Trung & Hamouda, Hassen, 2020. "Modeling of hybrid nanofluid behavior within a permeable media involving buoyancy effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    6. Xiong, Qingang & Ayani, M. & Barzinjy, Azeez A. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung, 2020. "Modeling of heat transfer augmentation due to complex-shaped turbulator using nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    7. Ying Zheng & Qiyao Han & Greg Keeffe, 2024. "An Evaluation of Different Landscape Design Scenarios to Improve Outdoor Thermal Comfort in Shenzhen," Land, MDPI, vol. 13(1), pages 1-17, January.
    8. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Manh, Tran Dinh & Nam, Nguyen Dang & Jacob, Kavikumar & Hajizadeh, Ahmad & Babazadeh, Houman & Mahjoub, Mohammed & Tlili, I. & Li, Z., 2020. "Simulation of heat transfer in 2D porous tank in appearance of magnetic nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    10. Ulpiani, Giulia, 2019. "Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts," Applied Energy, Elsevier, vol. 254(C).
    11. Gabriele Battista & Emanuele de Lieto Vollaro & Luca Evangelisti & Roberto de Lieto Vollaro, 2022. "Urban Overheating Mitigation Strategies Opportunities: A Case Study of a Square in Rome (Italy)," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    12. Silvia Croce & Elisa D’Agnolo & Mauro Caini & Rossana Paparella, 2021. "The Use of Cool Pavements for the Regeneration of Industrial Districts," Sustainability, MDPI, vol. 13(11), pages 1-24, June.
    13. Xiong, Qingang & Tlili, I. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung & Rebey, Amor & Haq, Rizwan-ul & Li, Z., 2020. "Energy storage simulation involving NEPCM solidification in appearance of fins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    14. Ehsan Daneshyar, 2024. "Residential Rooftop Urban Agriculture: Architectural Design Recommendations," Sustainability, MDPI, vol. 16(5), pages 1-34, February.
    15. Marcos Vinicius Bueno de Morais & Viviana Vanesa Urbina Guerrero & Edmilson Dias de Freitas & Edson R. Marciotto & Hugo Valdés & Christian Correa & Roberto Agredano & Ismael Vera-Puerto, 2019. "Sensitivity of Radiative and Thermal Properties of Building Material in the Urban Atmosphere," Sustainability, MDPI, vol. 11(23), pages 1-15, December.
    16. Kumar Ashwini & Briti Sundar Sil & Abdulla Al Kafy & Hamad Ahmed Altuwaijri & Hrithik Nath & Zullyadini A. Rahaman, 2024. "Harnessing Machine Learning Algorithms to Model the Association between Land Use/Land Cover Change and Heatwave Dynamics for Enhanced Environmental Management," Land, MDPI, vol. 13(8), pages 1-30, August.
    17. Hua Shi & George Xian & Roger Auch & Kevin Gallo & Qiang Zhou, 2021. "Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology," Land, MDPI, vol. 10(8), pages 1-30, August.
    18. Ling Xu & Mohsen Alae & Yinfei Du & Giuseppe Loprencipe & Paolo Peluso & Laura Moretti, 2023. "Thermal Characteristics and Temperature Distribution of Asphalt Mixtures Containing Residues from Municipal Solid Waste Incineration," Sustainability, MDPI, vol. 15(21), pages 1-18, November.
    19. Mirparizi, M. & Fotuhi, A.R., 2020. "Nonlinear coupled thermo-hyperelasticity analysis of thermal and mechanical wave propagation in a finite domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    20. Charlesworth, S.M. & Faraj-Llyod, A.S. & Coupe, S.J., 2017. "Renewable energy combined with sustainable drainage: Ground source heat and pervious paving," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 912-919.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1147-:d:1329153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.