Author
Listed:
- Nnabueze Darlington Nnaji
(Department of Microbiology, University Nigeria, Nsukka 410105, Nigeria
School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK)
- Chukwudi U Anyanwu
(Department of Microbiology, University Nigeria, Nsukka 410105, Nigeria)
- Taghi Miri
(School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK)
- Helen Onyeaka
(School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK)
Abstract
Heavy metal pollution from industrial activities and poor waste disposal poses significant environmental and health threats to humans and animals. This calls for sustainable approaches to the cleanup of heavy metals. This review explores metal tolerance mechanisms of bacteria such as the formation of biofilms, efflux systems, and enzymatic detoxification. These mechanisms allow bacteria communities to adapt and survive in contaminated environments. These adaptations are enhanced by mutations in the bacteria genes and by horizontal gene transfers, enabling bacteria species to survive under environmental stress while simultaneously contributing to nutrient cycling and the decomposition of organic matter. This review further explores the symbiotic interactions between bacteria, plants, and animals. These relationships enhance the metal tolerance ability of the different living organisms involved and are also very important in the bioremediation and phytoremediation of heavy metals. Plant growth-promoting rhizobacteria, Rhizobium , and Bacillus species are very important contributors to phytoremediation; they improve heavy metal uptake, improve the growth of roots, and plants resilience to stress. Moreover, this review highlights the importance of genetically engineered bacteria in closed-loop systems for optimized metal recovery. This offers environmentally friendly and sustainable options to the traditional remediation methods. Engineered Cupriavidus metallidurans CH34 and Pseudomonas putida strain 15420352 overexpressing metallothioneins have shown enhanced metal-binding capabilities, which makes them very effective in the treatment of industrial wastewaters and in biosorption applications. The use of engineered bacteria for the cleanup of heavy metals in closed-loop systems promotes the idea of a circular economy by recycling metals, thus reducing environmental waste. Multidisciplinary research that integrates synthetic biology, microbial ecology, and environmental science is very important for the advancement of metal bioremediation technologies. This review’s analysis on bacterial metal tolerance, symbiosis, and bioengineering strategies offers a pathway to effective bioremediation options, for the reclamation of heavy metal-polluted environments while promoting sustainable environmental practices.
Suggested Citation
Nnabueze Darlington Nnaji & Chukwudi U Anyanwu & Taghi Miri & Helen Onyeaka, 2024.
"Mechanisms of Heavy Metal Tolerance in Bacteria: A Review,"
Sustainability, MDPI, vol. 16(24), pages 1-23, December.
Handle:
RePEc:gam:jsusta:v:16:y:2024:i:24:p:11124-:d:1547032
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11124-:d:1547032. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.