IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p11092-d1546651.html
   My bibliography  Save this article

Structure Improvement of Two-Cylinder Engine Cooling Water Jacket Based on Flow Field Simulation

Author

Listed:
  • Lei Yang

    (Key Laboratory for Metallurgical Equipment and Control of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
    Shanxi Victory Auto Manufacturing Co., Ltd., Changzhi 046000, China)

  • Guangtao Lu

    (Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China)

  • Tao Wang

    (Key Laboratory for Metallurgical Equipment and Control of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China)

Abstract

The flow and heat transfer of the coolant directly affect the cooling performance, thermal load, and emissions of gasoline engine. The accurate estimation of heat transfer and temperature distribution within engines is crucial for studying thermal stresses and calculating engine performance. This study focuses on the design of a new cooling water jacket structure for a two-cylinder gasoline engine. In the novel structure, the coolant flows from the cylinder block to the cylinder head and then returns to the cylinder block, providing better cooling for the cylinder head. The three-dimensional simulation results show that the overall flow velocity of this structure ranges between 0.1 m/s and 3 m/s, which meets the design requirement of 0.1 m/s to 5 m/s. However, there are still some flow dead zones in this structure, which may lead to insufficient heat transfer. Therefore, the water jacket structure is further optimized. After optimization, the pressure drop between the inlet and outlet is decreased, and the velocity distribution becomes more rational. Both the flow velocity and the heat transfer coefficient meet the design targets. These results can provide theoretical guidance for the structural improvement of the water jacket and approaches to studying the flow characteristics of the coolants.

Suggested Citation

  • Lei Yang & Guangtao Lu & Tao Wang, 2024. "Structure Improvement of Two-Cylinder Engine Cooling Water Jacket Based on Flow Field Simulation," Sustainability, MDPI, vol. 16(24), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11092-:d:1546651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/11092/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/11092/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junhong Zhang & Zhexuan Xu & Jiewei Lin & Zefeng Lin & Jingchao Wang & Tianshu Xu, 2018. "Thermal Characteristics Investigation of the Internal Combustion Engine Cooling-Combustion System Using Thermal Boundary Dynamic Coupling Method and Experimental Verification," Energies, MDPI, vol. 11(8), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengyu Lu & Qing Gao & Liang Lv & Xiaoye Xue & Yan Wang, 2019. "Numerical Calculation Method of Model Predictive Control for Integrated Vehicle Thermal Management Based on Underhood Coupling Thermal Transmission," Energies, MDPI, vol. 12(2), pages 1-27, January.
    2. Zhao, Xian & Dong, Bingbing & Wang, Xiaoyue, 2023. "Reliability analysis of a two-dimensional voting system equipped with protective devices considering triggering failures," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Gequn Shu & Chen Hu & Hua Tian & Xiaoya Li & Zhigang Yu & Mingtao Wang, 2019. "Analysis and Optimization of Coupled Thermal Management Systems Used in Vehicles," Energies, MDPI, vol. 12(7), pages 1-17, April.
    4. Yuh-Yih Wu & James H. Wang & Faizan Mushtaq Mir, 2018. "Improving the Thermal Efficiency of the Homogeneous Charge Compression Ignition Engine by Using Various Combustion Patterns," Energies, MDPI, vol. 11(11), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11092-:d:1546651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.