IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p10904-d1542450.html
   My bibliography  Save this article

Stress Characteristics and Rock Burst Prediction of the Xuefeng Mountain No.1 Tunnel: On-Site and Numerical Investigations

Author

Listed:
  • Guo Xiang

    (College of Transportation Science and Engineering, Nanjing Tech University, Nanjing 211816, China)

  • Xiaohua Zhang

    (College of Transportation Science and Engineering, Nanjing Tech University, Nanjing 211816, China)

  • Shengnian Wang

    (College of Transportation Science and Engineering, Nanjing Tech University, Nanjing 211816, China
    Jiangsu Province Engineering Research Center of Transportation Infrastructure Security Technology, Nanjing 211816, China)

  • Sanyou Wu

    (Basis International School Nanjing, Nanjing 210023, China)

  • Xinming Pan

    (College of Transportation Science and Engineering, Nanjing Tech University, Nanjing 211816, China)

  • Dehui Xu

    (College of Transportation Science and Engineering, Nanjing Tech University, Nanjing 211816, China)

Abstract

The risk level and disaster scale of rock bursts in deeply buried and highly stressed tunnels are commonly high, posing serious threats to their construction safety. This study employed a combination of on-site measurements and discrete-continuous coupled numerical simulations to analyze the geo-stress distribution characteristics of surrounding rock masses in the Xuefeng Mountain No.1 Tunnel. The evolution processes of rock burst failure in surrounding rock masses with different lithologies and buried at different depths were discussed. The risk of rock bursts along this long tunnel was predicted using the stress–strength ratio criterion and the energy method. The results showed that the principal stress values of surrounding rock masses in the Xuefeng Mountain No.1 Tunnel followed a distribution pattern of σ x > σ y > σ z (where x, y, and z denoted the directions of tunnel cross-section and tunnel axis and the direction perpendicular to the ground), with average stress levels exceeding 20 MPa. It should be a typical tunnel dominated by horizontal tectonic stress. Stress concentration and elastic strain energy accumulation zones in this tunnel were mainly located at the bottom, and the largest displacements always occurred at the inverted arch. The main characteristics of rock burst failure in this tunnel included the sheet-like splitting of rock mass layers and the ejection of rock blocks. The risk evaluation of rock bursts across different sections of the tunnel, considering various rock types and buried depths, presented that these deeply buried slate and granite exhibited the highest risk level when assessed using the elastic strain energy index criterion. The comparative analysis between the elastic strain energy method and the stress–strength ratio criterion showed that the evaluation results obtained by the latter were more conservative. The findings of this study can provide a valuable reference for cognizing the geo-stress characteristics and predicting rock bursts in the surrounding rock masses of deep-buried and highly stressed tunnels.

Suggested Citation

  • Guo Xiang & Xiaohua Zhang & Shengnian Wang & Sanyou Wu & Xinming Pan & Dehui Xu, 2024. "Stress Characteristics and Rock Burst Prediction of the Xuefeng Mountain No.1 Tunnel: On-Site and Numerical Investigations," Sustainability, MDPI, vol. 16(24), pages 1-22, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:10904-:d:1542450
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/10904/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/10904/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Meng & Chuan He, 2020. "Back Analysis of the Initial Geo-Stress Field of Rock Masses in High Geo-Temperature and High Geo-Stress," Energies, MDPI, vol. 13(2), pages 1-20, January.
    2. Guoqing Chen & Tianbin Li & Guofeng Zhang & Hongyu Yin & Hang Zhang, 2014. "Temperature effect of rock burst for hard rock in deep-buried tunnel," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 915-926, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Wen & Zheng Hu & Yankun Wang & Zihan Zhang & Jinshan Sun, 2022. "Monitoring and Analysis of Geotemperature during the Tunnel Construction," Energies, MDPI, vol. 15(3), pages 1-16, January.
    2. Ziyun Li & Yunhui Zhu & Qianghui Song & Peiyong Wang & Dongyan Liu, 2023. "Dynamic Mechanical Properties and Failure Characteristics of Sandstone with Pre-Flaws Parallel to the Loading Direction," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    3. Yanhui Guo & Luo Luo & Rui Ma & Shunyin Li & Wei Zhang & Chuangye Wang, 2023. "Study on Surface Deformation and Movement Caused by Deep Continuous Mining of Steeply Inclined Ore Bodies," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    4. Hongjian Wang & Wanlin Gong & Guangxiang Yuan & Xiaodong Wang & Jitao Zhao & Yujie Su & Yuchen Wang, 2022. "Effect of In-Situ Stress on Hydraulic Fracturing of Tight Sandstone Based on Discrete Element Method," Energies, MDPI, vol. 15(15), pages 1-13, August.
    5. Xiaojie Yang & Zhenli Hao & Keyuan Liu & Zhigang Tao & Guangcheng Shi, 2023. "An Improved Unascertained Measure-Set Pair Analysis Model Based on Fuzzy AHP and Entropy for Landslide Susceptibility Zonation Mapping," Sustainability, MDPI, vol. 15(7), pages 1-28, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:10904-:d:1542450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.