Author
Listed:
- Haishun Xu
(The College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China)
- Huiying Chen
(The College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China)
- Chen Qian
(The College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China)
- Jining Li
(China Railway 22nd Bureau Group Real Estate Development Co., Ltd., Beijing 100043, China)
Abstract
Previous research has demonstrated that the multiple environmental benefits of green roofs are primarily associated with their evaporative cooling effect. However, current studies on green roof evapotranspiration (ET) mainly focus on extensive green roofs, and the evaporative cooling effect of intensive green roofs is still unclear. Using the intensive green roof of AQUA City in Nanjing as a case study, this research employs the three-temperature (3T) model combined with high-resolution thermal infrared imagery obtained via an unmanned aerial vehicle (UAV) to estimate the ET of different vegetation types. The study aims to explore the spatiotemporal variations in surface temperature, evapotranspiration (ET) rate, and evaporative cooling rate for various vegetation types under typical seasonal (summer and winter) and weather conditions (sunny, cloudy, and rainy before and after rainy days). The results showed that: (1) the ET rates and evaporative cooling effects of different types of vegetation differed significantly, with shrubs having the fastest ET rates, followed by arbors, and grasslands having relatively low ET rates. (2) Solar radiation and air temperature are the most crucial meteorological parameters for inducing ET on green roofs. In this study, the evaporative cooling performance showed the patterns of summer > winter and sunny > cloudy > rainy days. (3) In the spatial distribution of tree and irrigation plant groups, some low-temperature diffusion phenomena to the adjacent small microenvironments were evident, while the diffusion effect in winter is smaller and mainly shows the opposite warming characteristics. This study offers a valuable reference for quantifying the ET and evaporative cooling effects of various vegetation types on intensive green roofs, facilitating the optimization of vegetation configuration and supporting sustainable urban development.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:10812-:d:1540564. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.