IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p10812-d1540564.html
   My bibliography  Save this article

The Evapotranspiration Characteristics and Evaporative Cooling Effects of Different Vegetation Types on an Intensive Green Roof: Dynamic Performance Under Different Weather Conditions

Author

Listed:
  • Haishun Xu

    (The College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China)

  • Huiying Chen

    (The College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China)

  • Chen Qian

    (The College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China)

  • Jining Li

    (China Railway 22nd Bureau Group Real Estate Development Co., Ltd., Beijing 100043, China)

Abstract

Previous research has demonstrated that the multiple environmental benefits of green roofs are primarily associated with their evaporative cooling effect. However, current studies on green roof evapotranspiration (ET) mainly focus on extensive green roofs, and the evaporative cooling effect of intensive green roofs is still unclear. Using the intensive green roof of AQUA City in Nanjing as a case study, this research employs the three-temperature (3T) model combined with high-resolution thermal infrared imagery obtained via an unmanned aerial vehicle (UAV) to estimate the ET of different vegetation types. The study aims to explore the spatiotemporal variations in surface temperature, evapotranspiration (ET) rate, and evaporative cooling rate for various vegetation types under typical seasonal (summer and winter) and weather conditions (sunny, cloudy, and rainy before and after rainy days). The results showed that: (1) the ET rates and evaporative cooling effects of different types of vegetation differed significantly, with shrubs having the fastest ET rates, followed by arbors, and grasslands having relatively low ET rates. (2) Solar radiation and air temperature are the most crucial meteorological parameters for inducing ET on green roofs. In this study, the evaporative cooling performance showed the patterns of summer > winter and sunny > cloudy > rainy days. (3) In the spatial distribution of tree and irrigation plant groups, some low-temperature diffusion phenomena to the adjacent small microenvironments were evident, while the diffusion effect in winter is smaller and mainly shows the opposite warming characteristics. This study offers a valuable reference for quantifying the ET and evaporative cooling effects of various vegetation types on intensive green roofs, facilitating the optimization of vegetation configuration and supporting sustainable urban development.

Suggested Citation

  • Haishun Xu & Huiying Chen & Chen Qian & Jining Li, 2024. "The Evapotranspiration Characteristics and Evaporative Cooling Effects of Different Vegetation Types on an Intensive Green Roof: Dynamic Performance Under Different Weather Conditions," Sustainability, MDPI, vol. 16(24), pages 1-22, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:10812-:d:1540564
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/10812/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/10812/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsang, S.W. & Jim, C.Y., 2011. "Theoretical evaluation of thermal and energy performance of tropical green roofs," Energy, Elsevier, vol. 36(5), pages 3590-3598.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jim, C.Y., 2015. "Cold-season solar input and ambivalent thermal behavior brought by climber greenwalls," Energy, Elsevier, vol. 90(P1), pages 926-938.
    2. He, Yang & Yu, Hang & Ozaki, Akihito & Dong, Nannan & Zheng, Shiling, 2017. "Influence of plant and soil layer on energy balance and thermal performance of green roof system," Energy, Elsevier, vol. 141(C), pages 1285-1299.
    3. Tan, Taotao & Kong, Fanhua & Yin, Haiwei & Cook, Lauren M. & Middel, Ariane & Yang, Shaoqi, 2023. "Carbon dioxide reduction from green roofs: A comprehensive review of processes, factors, and quantitative methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Meng Zhen & Weihan Zou & Wei Ding, 2022. "Cooling effect of roof greening with water misting in a cold region during the summer," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 7093-7114, May.
    5. Raji, Babak & Tenpierik, Martin J. & van den Dobbelsteen, Andy, 2015. "The impact of greening systems on building energy performance: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 610-623.
    6. Jim, C.Y., 2015. "Diurnal and partitioned heat-flux patterns of coupled green-building roof systems," Renewable Energy, Elsevier, vol. 81(C), pages 262-274.
    7. Jim, C.Y., 2014. "Passive warming of indoor space induced by tropical green roof in winter," Energy, Elsevier, vol. 68(C), pages 272-282.
    8. Šuklje, Tomaž & Medved, Sašo & Arkar, Ciril, 2016. "On detailed thermal response modeling of vertical greenery systems as cooling measure for buildings and cities in summer conditions," Energy, Elsevier, vol. 115(P1), pages 1055-1068.
    9. Friedman, Chanoch & Becker, Nir & Erell, Evyatar, 2014. "Energy retrofit of residential building envelopes in Israel: A cost-benefit analysis," Energy, Elsevier, vol. 77(C), pages 183-193.
    10. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    11. Matteo Roggero, 2020. "Social dilemmas, policy instruments, and climate adaptation measures: the case of green roofs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 625-642, April.
    12. Zuzana Koscikova & Vladimir Krivtsov, 2023. "Environmental and Social Benefits of Extensive Green Roofs Applied on Bus Shelters in Edinburgh," Land, MDPI, vol. 12(10), pages 1-24, September.
    13. Patryk Antoszewski & Dariusz Świerk & Michał Krzyżaniak, 2020. "Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone," IJERPH, MDPI, vol. 17(19), pages 1-36, September.
    14. Xiao, Min & Lin, Yaolin & Han, Jie & Zhang, Guoqiang, 2014. "A review of green roof research and development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 633-648.
    15. Ferrante, Patrizia & La Gennusa, Maria & Peri, Giorgia & Rizzo, Gianfranco & Scaccianoce, Gianluca, 2016. "Vegetation growth parameters and leaf temperature: Experimental results from a six plots green roofs' system," Energy, Elsevier, vol. 115(P3), pages 1723-1732.
    16. Hashemi, Sajedeh Sadat Ghazizadeh & Mahmud, Hilmi Bin & Ashraf, Muhammad Aqeel, 2015. "Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 669-679.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:10812-:d:1540564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.