IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10520-d1533652.html
   My bibliography  Save this article

The Interaction and Sustainable Efficiency Between Tourism Systems and the Energy–Economy–Environment System: A Novel Parallel Network Super-Efficiency Slacks-Based Measure Model

Author

Listed:
  • Zhijian Chen

    (College of Transportation & Communications, Shanghai Maritime University, Shanghai 201306, China
    Shenzhen Urban Transport Planning Center Co., Ltd., Shenzhen 518057, China)

  • Jiqiang Zhao

    (Zhejiang Province Key Think Tank, Institute of Ecological Civilization, Zhejiang A&F University, Hangzhou 311300, China
    School of Economics and Management, Zhejiang A&F University, Hangzhou 311300, China)

  • Xinqiang Chen

    (Logistics Science and Engineering Research Institute, Shanghai Maritime University, Shanghai 201306, China)

Abstract

Sustainable tourism entails balancing economic growth, environmental protection, and energy utilisation. However, the current interactive dynamics between urban agglomeration tourism systems and the energy–economy–environment (EEE) system, as well as the sustainable efficiency of the tourism–energy–economy–environment (TEEE) system, remain unclear. For the first time, this study employs a super-efficiency network slacks-based measure (SE-NSBM) model to interact with tourism and EEE systems, proposing a novel network structure that includes feedback variables. To validate the proposed model, this study evaluated the efficiency of the TEEE system and its subsystems in the Yangtze River Delta urban agglomeration (YRDUA) from 2016 to 2020. The study revealed significant variations in the efficiency of the TEEE, tourism, and EEE systems among cities in the YRDUA, with a discernible downward trend. The TEEE and tourism systems exhibit relatively weak coping capabilities when faced with significant unforeseen events, highlighting the urgent need to strengthen system resilience. The results also demonstrate that the new model effectively resolves the issue of efficiency overestimation in the TEEE system observed in traditional models, which tend to overestimate actual efficiency by 3%. The novel model and empirical results offer decision-makers new perspectives and practical insights into formulating sustainable tourism policies.

Suggested Citation

  • Zhijian Chen & Jiqiang Zhao & Xinqiang Chen, 2024. "The Interaction and Sustainable Efficiency Between Tourism Systems and the Energy–Economy–Environment System: A Novel Parallel Network Super-Efficiency Slacks-Based Measure Model," Sustainability, MDPI, vol. 16(23), pages 1-23, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10520-:d:1533652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10520/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10520/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity and intermediate products: A frontier approach," Economics Letters, Elsevier, vol. 50(1), pages 65-70, January.
    2. Zhou, P. & Sun, Z.R. & Zhou, D.Q., 2014. "Optimal path for controlling CO2 emissions in China: A perspective of efficiency analysis," Energy Economics, Elsevier, vol. 45(C), pages 99-110.
    3. Castelli, Lorenzo & Pesenti, Raffaele & Ukovich, Walter, 2004. "DEA-like models for the efficiency evaluation of hierarchically structured units," European Journal of Operational Research, Elsevier, vol. 154(2), pages 465-476, April.
    4. Chen, Shanshan & Zhang, Ruchuan & Li, Peiwen & Li, Aijun, 2023. "How to improve the performance of China's energy-transport-economy-environment system: An analysis based on new strategy parallel-series input-output data envelopment analysis models," Energy, Elsevier, vol. 281(C).
    5. Rajinder Kaur & Jolly Puri, 2024. "Analysing cost-effectiveness in dynamic network DEA: a directional distance function approach," Operational Research, Springer, vol. 24(4), pages 1-31, December.
    6. Liu, Fangmei & Li, Li & Ye, Bin & Qin, Quande, 2023. "A novel stochastic semi-parametric frontier-based three-stage DEA window model to evaluate China's industrial green economic efficiency," Energy Economics, Elsevier, vol. 119(C).
    7. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    8. W. Liu & W. Meng & X. Li & D. Zhang, 2010. "DEA models with undesirable inputs and outputs," Annals of Operations Research, Springer, vol. 173(1), pages 177-194, January.
    9. Song, Malin & Li, Hui, 2019. "Estimating the efficiency of a sustainable Chinese tourism industry using bootstrap technology rectification," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 45-54.
    10. Lawrence M. Seiford & Joe Zhu, 1999. "Profitability and Marketability of the Top 55 U.S. Commercial Banks," Management Science, INFORMS, vol. 45(9), pages 1270-1288, September.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    12. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    13. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    14. Zhao, Jiqiang & Wu, Xianhua & Guo, Ji & Gao, Chao, 2022. "Allocation of SO2 emission rights in city agglomerations considering cross-border transmission of pollutants: A new network DEA model," Applied Energy, Elsevier, vol. 325(C).
    15. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    16. Duras, Toni & Javed, Farrukh & Månsson, Kristofer & Sjölander, Pär & Söderberg, Magnus, 2023. "Using machine learning to select variables in data envelopment analysis: Simulations and application using electricity distribution data," Energy Economics, Elsevier, vol. 120(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. AGRELL, Per J. & HATAMI-MARBINI, Adel, 2013. "Frontier-based performance analysis models for supply chain management: state of the art and research directions," LIDAM Reprints CORE 2555, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Suvvari Anandarao & S. Raja Sethu Durai & Phanindra Goyari, 2019. "Efficiency Decomposition in two-stage Data Envelopment Analysis: An application to Life Insurance companies in India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 271-285, June.
    3. Guo, Chuanyin & Abbasi Shureshjani, Roohollah & Foroughi, Ali Asghar & Zhu, Joe, 2017. "Decomposition weights and overall efficiency in two-stage additive network DEA," European Journal of Operational Research, Elsevier, vol. 257(3), pages 896-906.
    4. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    5. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    6. Akther, Syed & Fukuyama, Hirofumi & Weber, William L., 2013. "Estimating two-stage network Slacks-based inefficiency: An application to Bangladesh banking," Omega, Elsevier, vol. 41(1), pages 88-96.
    7. Bai, Xue-Jie & Yan, Wen-Kai & Chiu, Yung-Ho, 2015. "Performance evaluation of China's Hi-tech zones in the post financial crisis era — Analysis based on the dynamic network SBM model," China Economic Review, Elsevier, vol. 34(C), pages 122-134.
    8. Dariush Akbarian, 2021. "Network DEA based on DEA-ratio," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.
    9. AGRELL, Per & HATAMI-MARBINI, Adel, 2011. "Frontier-based performance analysis models for supply chain management; state of the art and research directions," LIDAM Discussion Papers CORE 2011069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    11. Li, Yongjun & Chen, Yao & Liang, Liang & Xie, Jianhui, 2012. "DEA models for extended two-stage network structures," Omega, Elsevier, vol. 40(5), pages 611-618.
    12. Fukuyama, Hirofumi & Weber, William L., 2010. "A slacks-based inefficiency measure for a two-stage system with bad outputs," Omega, Elsevier, vol. 38(5), pages 398-409, October.
    13. Kao, Chiang, 2019. "Inefficiency identification for closed series production systems," European Journal of Operational Research, Elsevier, vol. 275(2), pages 599-607.
    14. Fenfen Li & Bo Dai & Qifan Wu, 2021. "Dynamic Green Growth Assessment of China’s Industrial System with an Improved SBM Model and Global Malmquist Index," Mathematics, MDPI, vol. 9(20), pages 1-26, October.
    15. Bai, Xue-Jie & Li, Zhen-Yang & Zeng, Jin, 2020. "Performance evaluation of China's innovation during the industry-university-research collaboration process—an analysis basis on the dynamic network slacks-based measurement model," Technology in Society, Elsevier, vol. 62(C).
    16. Junhee Bae & Yanghon Chung & Hyesoo Ko, 2021. "Analysis of efficiency in public research activities in terms of knowledge spillover: focusing on earthquake R&D accomplishments," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2249-2264, September.
    17. Chen, Ya & Li, Yongjun & Liang, Liang & Salo, Ahti & Wu, Huaqing, 2016. "Frontier projection and efficiency decomposition in two-stage processes with slacks-based measures," European Journal of Operational Research, Elsevier, vol. 250(2), pages 543-554.
    18. Kao, Chiang, 2020. "Decomposition of slacks-based efficiency measures in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 283(2), pages 588-600.
    19. Wade D. Cook & Chuanyin Guo & Wanghong Li & Zhepeng Li & Liang Liang & Joe Zhu, 2017. "Efficiency Measurement of Multistage Processes: Context Dependent Numbers of Stages," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(06), pages 1-18, December.
    20. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10520-:d:1533652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.