IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10431-d1531956.html
   My bibliography  Save this article

Smart Manufacturing Promotes High-Quality Development of Enterprises in China

Author

Listed:
  • Dongyu Zhao

    (School of Accounting, Management Accounting Research Center, Dongbei University of Finance and Economics, Dalian 116025, China)

  • Man Wang

    (School of Accounting, Management Accounting Research Center, Dongbei University of Finance and Economics, Dalian 116025, China)

Abstract

Smart manufacturing is the core technology of the new industrial revolution and plays a crucial role in promoting high-quality development of enterprises. By using the panel dataset from 2015 to 2022 in China and applying text analysis methods to measure the level of smart manufacturing, we examine the impact of smart manufacturing on enterprises’ high-quality development. The empirical results find that smart manufacturing significantly promotes high-quality development of enterprises, and this finding remains robust after high-dimensional fixed effects, instrumental variable, PSM-DID, and other robustness tests. Mechanism analysis indicates that smart manufacturing promotes enterprises’ high-quality development by reducing operating costs, enhancing capacity utilization, and improving technological innovation. Cross-sectional analysis reveals that the promoting effect is more obvious in manufacturing, high-tech, and labor-intensive enterprises. Expanded analysis reveals that smart manufacturing also enhances ESG performance by promoting green technological innovation and productivity. This study enriches the research on the economic effects of smart manufacturing, offering substantial theoretical and practical implications for improving corporate efficiency and quality.

Suggested Citation

  • Dongyu Zhao & Man Wang, 2024. "Smart Manufacturing Promotes High-Quality Development of Enterprises in China," Sustainability, MDPI, vol. 16(23), pages 1-20, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10431-:d:1531956
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10431/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10431/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jay Dixon & Bryan Hong & Lynn Wu, 2021. "The Robot Revolution: Managerial and Employment Consequences for Firms," Management Science, INFORMS, vol. 67(9), pages 5586-5605, September.
    2. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    3. Daron Acemoglu & Pascual Restrepo, 2018. "Low-Skill and High-Skill Automation," Journal of Human Capital, University of Chicago Press, vol. 12(2), pages 204-232.
    4. Maya Eden & Paul Gaggl, 2018. "On the Welfare Implications of Automation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 29, pages 15-43, July.
    5. Yu, Feifei & Wang, Liting & Li, Xiaotong, 2020. "The effects of government subsidies on new energy vehicle enterprises: The moderating role of intelligent transformation," Energy Policy, Elsevier, vol. 141(C).
    6. Daron Acemoglu & Pascual Restrepo, 2019. "Automation and New Tasks: How Technology Displaces and Reinstates Labor," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 3-30, Spring.
    7. Hong Cheng & Ruixue Jia & Dandan Li & Hongbin Li, 2019. "The Rise of Robots in China," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 71-88, Spring.
    8. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    9. T. Ravichandran & Shu Han & Sunil Mithas, 2017. "Mitigating Diminishing Returns to R&D: The Role of Information Technology in Innovation," Information Systems Research, INFORMS, vol. 28(4), pages 812-827, December.
    10. Joshi, Aditi D. & Gupta, Surendra M., 2019. "Evaluation of design alternatives of End-Of-Life products using internet of things," International Journal of Production Economics, Elsevier, vol. 208(C), pages 281-293.
    11. Xiang Deng & Xiang Cheng, 2019. "Can ESG Indices Improve the Enterprises’ Stock Market Performance?—An Empirical Study from China," Sustainability, MDPI, vol. 11(17), pages 1-13, September.
    12. Andrew Kusiak, 2017. "Smart manufacturing must embrace big data," Nature, Nature, vol. 544(7648), pages 23-25, April.
    13. Zumian Xiao & Hongfeng Peng & Zheyao Pan, 2022. "Innovation, external technological environment and the total factor productivity of enterprises," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 62(1), pages 3-29, March.
    14. David H. Autor, 2015. "Why Are There Still So Many Jobs? The History and Future of Workplace Automation," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 3-30, Summer.
    15. DeCanio, Stephen J., 2016. "Robots and humans – complements or substitutes?," Journal of Macroeconomics, Elsevier, vol. 49(C), pages 280-291.
    16. Wang, Rong & Tan, Junlan, 2021. "Exploring the coupling and forecasting of financial development, technological innovation, and economic growth," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xinchun & Sun, Murong & Liu, Jianxu & Xu, Aijia, 2024. "The nexus between industrial robot and employment in China: The effects of technology substitution and technology creation," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    2. Peng Liang & Xinhui Sun & Luzhuang Qi, 2024. "Does artificial intelligence technology enhance green transformation of enterprises: based on green innovation perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 21651-21687, August.
    3. Cheng, Can & Luo, Jiayu & Zhu, Chun & Zhang, Shangfeng, 2024. "Artificial intelligence and the skill premium: A numerical analysis of theoretical models," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    4. Davide Dottori, 2021. "Robots and employment: evidence from Italy," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(2), pages 739-795, July.
    5. Jurkat, Anne & Klump, Rainer & Schneider, Florian, 2023. "Robots and Wages: A Meta-Analysis," EconStor Preprints 274156, ZBW - Leibniz Information Centre for Economics.
    6. Luca Grilli & Sergio Mariotti & Riccardo Marzano, 2024. "Artificial intelligence and shapeshifting capitalism," Journal of Evolutionary Economics, Springer, vol. 34(2), pages 303-318, April.
    7. Borsato, Andrea & Lorentz, André, 2023. "The Kaldor–Verdoorn law at the age of robots and AI," Research Policy, Elsevier, vol. 52(10).
    8. Stähler, Nikolai, 2021. "The Impact of Aging and Automation on the Macroeconomy and Inequality," Journal of Macroeconomics, Elsevier, vol. 67(C).
    9. Belloc, Filippo & Burdin, Gabriel & Landini, Fabio, 2020. "Robots and Worker Voice: An Empirical Exploration," IZA Discussion Papers 13799, Institute of Labor Economics (IZA).
    10. Baek, Seungjin & Jeong, Deokjae, 2023. "Factors Influencing Labor Share: Automation, Task Innovation, and Elasticity of Substitution," MPRA Paper 118730, University Library of Munich, Germany.
    11. Gasteiger, Emanuel & Prettner, Klaus, 2022. "Automation, Stagnation, And The Implications Of A Robot Tax," Macroeconomic Dynamics, Cambridge University Press, vol. 26(1), pages 218-249, January.
    12. Genz, Sabrina & Schnabel, Claus, 2021. "Digging into the Digital Divide: Workers' Exposure to Digitalization and Its Consequences for Individual Employment," IZA Discussion Papers 14649, Institute of Labor Economics (IZA).
    13. Wang, Weilong & Wang, Jianlong & Ye, Huiying & Wu, Haitao, 2024. "Polluted air, smarter factories? China's robot imports shed light on a potential link," Energy Economics, Elsevier, vol. 134(C).
    14. Wang, Ting & Zhang, Yi & Liu, Chun, 2024. "Robot adoption and employment adjustment: Firm-level evidence from China," China Economic Review, Elsevier, vol. 84(C).
    15. Pablo Casas & José L. Torres, 2024. "Government size and automation," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 31(3), pages 780-807, June.
    16. Zhang, Yi & Wang, Ting & Liu, Chun, 2024. "Beyond the modern productivity paradox: The effect of robotics technology on firm-level total factor productivity in China," Journal of Asian Economics, Elsevier, vol. 90(C).
    17. Belloc, Filippo & Burdin, Gabriel & Landini, Fabio, 2022. "Robots, Digitalization, and Worker Voice," GLO Discussion Paper Series 1038, Global Labor Organization (GLO).
    18. Jiang, Hong & Wang, Xue & Liu, Chongguang, 2024. "Automated machines and the labor wage gap," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    19. Lee Ohanian & Musa Orak & Shihan Shen, 2023. "Revisiting Capital-Skill Complementarity, Inequality, and Labor Share," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 479-505, December.
    20. Montobbio, Fabio & Staccioli, Jacopo & Virgillito, Maria Enrica & Vivarelli, Marco, 2022. "Robots and the origin of their labour-saving impact," Technological Forecasting and Social Change, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10431-:d:1531956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.