IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10416-d1531614.html
   My bibliography  Save this article

The Use of Renewable Energy Sources and Environmental Degradation in EU Countries

Author

Listed:
  • Agnieszka Sompolska-Rzechuła

    (Department of Mathematical Applications in Economy, Faculty of Economics, West Pomeranian University of Technology in Szczecin, Janickiego Street 31, 71-270 Szczecin, Poland)

  • Iwona Bąk

    (Department of Mathematical Applications in Economy, Faculty of Economics, West Pomeranian University of Technology in Szczecin, Janickiego Street 31, 71-270 Szczecin, Poland)

  • Aneta Becker

    (Department of Mathematical Applications in Economy, Faculty of Economics, West Pomeranian University of Technology in Szczecin, Janickiego Street 31, 71-270 Szczecin, Poland)

  • Henryk Marjak

    (Department of Mathematical Applications in Economy, Faculty of Economics, West Pomeranian University of Technology in Szczecin, Janickiego Street 31, 71-270 Szczecin, Poland)

  • Joanna Perzyńska

    (Department of Mathematical Applications in Economy, Faculty of Economics, West Pomeranian University of Technology in Szczecin, Janickiego Street 31, 71-270 Szczecin, Poland)

Abstract

Renewable energy sources play a crucial role in sustainable development strategies, addressing environmental protection, energy security, economic growth, and enhancing quality of life. Renewable energy sources are significantly less damaging to the environment compared to traditional energy sources, as they help lower greenhouse gas emissions, decrease air and water pollution, and consequently, limit environmental degradation. The study helped formulate the following research goals: assessment of changes in the use of renewable energy sources and the degree of environmental degradation in the European Union countries, and comparison of the spatial differentiation of the EU countries in terms of the use of renewable energy sources and the degree of environmental degradation, taking into account both indicated criteria. The survey covers the years 2015, 2019, and 2021. The article highlights the important role of analytical methods in the analysis of renewable energy consumption and its impact on the environment. The Self-Organizing Map was used for grouping the European Union countries based on renewable energy sources’ levels and environmental degradation, allowing the identification of patterns and clusters. The results showed that the Scandinavian countries are leading the way in renewable energy sources and low environmental degradation, while the Eastern European countries are struggling, with a low share of renewable energy sources and high degradation.

Suggested Citation

  • Agnieszka Sompolska-Rzechuła & Iwona Bąk & Aneta Becker & Henryk Marjak & Joanna Perzyńska, 2024. "The Use of Renewable Energy Sources and Environmental Degradation in EU Countries," Sustainability, MDPI, vol. 16(23), pages 1-32, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10416-:d:1531614
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10416/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10416/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    2. Mahalik, Mantu Kumar & Mallick, Hrushikesh & Padhan, Hemachandra, 2021. "Do educational levels influence the environmental quality? The role of renewable and non-renewable energy demand in selected BRICS countries with a new policy perspective," Renewable Energy, Elsevier, vol. 164(C), pages 419-432.
    3. Lucio Laureti & Alessandro Massaro & Alberto Costantiello & Angelo Leogrande, 2023. "The Impact of Renewable Electricity Output on Sustainability in the Context of Circular Economy: A Global Perspective," Sustainability, MDPI, vol. 15(3), pages 1-29, January.
    4. Kamani, D. & Ardehali, M.M., 2023. "Long-term forecast of electrical energy consumption with considerations for solar and wind energy sources," Energy, Elsevier, vol. 268(C).
    5. Bożena Gajdzik & Radosław Wolniak & Rafał Nagaj & Wieslaw Wes Grebski & Taras Romanyshyn, 2023. "Barriers to Renewable Energy Source (RES) Installations as Determinants of Energy Consumption in EU Countries," Energies, MDPI, vol. 16(21), pages 1-32, October.
    6. Aiyshwariya Paulvannan Kanmani & Renee Obringer & Benjamin Rachunok & Roshanak Nateghi, 2020. "Assessing Global Environmental Sustainability Via an Unsupervised Clustering Framework," Sustainability, MDPI, vol. 12(2), pages 1-12, January.
    7. Belaïd, Fateh & Zrelli, Maha Harbaoui, 2019. "Renewable and non-renewable electricity consumption, environmental degradation and economic development: Evidence from Mediterranean countries," Energy Policy, Elsevier, vol. 133(C).
    8. Magdalena Tutak & Jarosław Brodny & Dominika Siwiec & Robert Ulewicz & Peter Bindzár, 2020. "Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential," Energies, MDPI, vol. 13(24), pages 1-31, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiucheng Li & Jiang Hu & Bolin Yu, 2021. "Spatiotemporal Patterns and Influencing Mechanism of Urban Residential Energy Consumption in China," Energies, MDPI, vol. 14(13), pages 1-17, June.
    2. Bongsuk Sung & Myoung Shik Choi & Woo-Yong Song, 2019. "Exploring the Effects of Government Policies on Economic Performance: Evidence Using Panel Data for Korean Renewable Energy Technology Firms," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    3. Tomiwa Sunday Adebayo & Abraham Ayobamiji Awosusi & Seun Damola Oladipupo & Ephraim Bonah Agyekum & Arunkumar Jayakumar & Nallapaneni Manoj Kumar, 2021. "Dominance of Fossil Fuels in Japan’s National Energy Mix and Implications for Environmental Sustainability," IJERPH, MDPI, vol. 18(14), pages 1-20, July.
    4. Adekoya, Oluwasegun B. & Olabode, Joshua K. & Rafi, Syed K., 2021. "Renewable energy consumption, carbon emissions and human development: Empirical comparison of the trajectories of world regions," Renewable Energy, Elsevier, vol. 179(C), pages 1836-1848.
    5. Eleftheriadis, Iordanis M. & Anagnostopoulou, Evgenia G., 2015. "Identifying barriers in the diffusion of renewable energy sources," Energy Policy, Elsevier, vol. 80(C), pages 153-164.
    6. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    7. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    8. Lee, Chien-Chiang & Wang, Fuhao & Lou, Runchi & Wang, Keying, 2023. "How does green finance drive the decarbonization of the economy? Empirical evidence from China," Renewable Energy, Elsevier, vol. 204(C), pages 671-684.
    9. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    10. Ortega, Margarita & del Río, Pablo & Montero, Eduardo A., 2013. "Assessing the benefits and costs of renewable electricity. The Spanish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 294-304.
    11. Ashkan Safari & Hamed Kheirandish Gharehbagh & Morteza Nazari Heris, 2023. "DeepVELOX: INVELOX Wind Turbine Intelligent Power Forecasting Using Hybrid GWO–GBR Algorithm," Energies, MDPI, vol. 16(19), pages 1-22, September.
    12. Szarka, Joseph, 2006. "Wind power, policy learning and paradigm change," Energy Policy, Elsevier, vol. 34(17), pages 3041-3048, November.
    13. Jahanger, Atif & Hossain, Mohammad Razib & Usman, Muhammad & Chukwuma Onwe, Joshua, 2023. "Recent scenario and nexus between natural resource dependence, energy use and pollution cycles in BRICS region: Does the mediating role of human capital exist?," Resources Policy, Elsevier, vol. 81(C).
    14. Usman, Muhammad & Khalid, Khaizran & Mehdi, Muhammad Abuzar, 2021. "What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization," Renewable Energy, Elsevier, vol. 168(C), pages 1165-1176.
    15. Agnolucci, Paolo, 2008. "Factors influencing the likelihood of regulatory changes in renewable electricity policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 141-161, January.
    16. Gao, Chunjiao & Chen, Hongxi, 2023. "Electricity from renewable energy resources: Sustainable energy transition and emissions for developed economies," Utilities Policy, Elsevier, vol. 82(C).
    17. Tinta, Abdoulganiour Almame, 2023. "Energy substitution in Africa: Cross-regional differentiation effects," Energy, Elsevier, vol. 263(PA).
    18. Grzegorz Zimon, 2020. "Financial Liquidity Management Strategies in Polish Energy Companies," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 365-368.
    19. Shahriyar Nasirov & Carlos Silva & Claudio A. Agostini, 2015. "Investors’ Perspectives on Barriers to the Deployment of Renewable Energy Sources in Chile," Energies, MDPI, vol. 8(5), pages 1-21, April.
    20. Adenle, Ademola A., 2020. "Assessment of solar energy technologies in Africa-opportunities and challenges in meeting the 2030 agenda and sustainable development goals," Energy Policy, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10416-:d:1531614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.