IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10194-d1526334.html
   My bibliography  Save this article

Ecological Carrying Capacity and Driving Factors of the Source Region of the Yellow River in China over the Past 30 Years

Author

Listed:
  • Sujin Lu

    (Eco-Environmental Engineering College, Qinghai University, Xining 810016, China
    These authors contributed equally to this work.)

  • Shipeng Zhou

    (Eco-Environmental Engineering College, Qinghai University, Xining 810016, China
    These authors contributed equally to this work.)

  • Xiaoyan Zhang

    (Eco-Environmental Engineering College, Qinghai University, Xining 810016, China)

  • Xujie Ma

    (Eco-Environmental Engineering College, Qinghai University, Xining 810016, China)

  • Jiawei Tian

    (Eco-Environmental Engineering College, Qinghai University, Xining 810016, China)

  • Yanhong Gong

    (Eco-Environmental Engineering College, Qinghai University, Xining 810016, China)

  • Xiaojing Zheng

    (Eco-Environmental Engineering College, Qinghai University, Xining 810016, China)

  • Jianhua Si

    (College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China)

  • Biyu Qin

    (Eco-Environmental Engineering College, Qinghai University, Xining 810016, China)

Abstract

The source region of the Yellow River (SRYR) serves as a crucial ecological barrier on the Qinghai–Tibet Plateau in China. In recent decades, the ecological condition of the SRYR has deteriorated, resulting in a state of ecological insecurity. This state of affairs endangers the region’s living environment, aggravates poverty, and seriously hinders the region’s sustainable ecological, social, and economic development. Ecosystems, landscape patterns, ecological carrying capacity (ECC), and drivers interact with each other in the region, shaping the regional ecological pattern’s past, present, and future. However, the specific mechanisms underlying these interactions have yet to be elucidated. Based on the land use type data of the SRYR in China for the last 30 years in seven periods (1990, 1995, 2000, 2005, 2010, 2015, and 2020), and combined with the ecological footprint method, we carried out a study of spatial and temporal changes at the county scale and the source region scale, used the landscape pattern index to describe the changes in ECC, and analyzed the main drivers that affect the ECC of the source region. The results indicate the following: (1) Over the past 30 years, the greatest changes in the area have occurred in grasslands and unused lands. Between 2005 and 2010, a significant conversion of unused lands to grasslands occurred in the SRYR, amounting to 7382.33 km 2 , mainly distributed in Maduo County and Maqin County. (2) The absolute ecological carrying capacity (AECC) of grasslands in the SRYR has shown an upward trend, while that of forests has declined. The ECC of the source region has generally increased, with higher ECC observed in Maqin County, Maduo County, and Xinghai County. (3) The spatial distribution of ECC in the SRYR has shown non-uniform changes, with an increasing trend observed across all county-level areas. The spatial heterogeneity of AECC is high, with minor overall spatial distribution changes. (4) There is a positive correlation between the ECC of the SRYR with SPLIT, PARA_MN, and COHESION ( p < 0.05). The impact of landscape pattern indices on ECC ranked as COHESION > PARA_MN > SPLIT. (5) Principal component analysis indicates that the primary driving forces of the SRYR’s ECC are social factors, such as urban population (X 5 ) and per capita GDP (X 8 ), with natural factors being less significant than social factors. This research is crucial for maintaining ECC in the SRYR, protecting and restoring the ecological environment, and ensuring the sustainable development of the economy and society.

Suggested Citation

  • Sujin Lu & Shipeng Zhou & Xiaoyan Zhang & Xujie Ma & Jiawei Tian & Yanhong Gong & Xiaojing Zheng & Jianhua Si & Biyu Qin, 2024. "Ecological Carrying Capacity and Driving Factors of the Source Region of the Yellow River in China over the Past 30 Years," Sustainability, MDPI, vol. 16(23), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10194-:d:1526334
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10194/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10194/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinhuang Mao & Qiong Wu & Meihong Zhu & Chengpeng Lu, 2022. "Effects of Environmental Regulation on Green Total Factor Productivity: An Evidence from the Yellow River Basin, China," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    2. Yao Lu & Xiaoshun Li & Heng Ni & Xin Chen & Chuyu Xia & Dongmei Jiang & Huiping Fan, 2019. "Temporal-Spatial Evolution of the Urban Ecological Footprint Based on Net Primary Productivity: A Case Study of Xuzhou Central Area, China," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudiu Tiberiu Albulescu, 2024. "Total factor productivity and tax avoidance: An asymmetric micro-data analysis for European oil and gas companies," Working Papers 2024.15, International Network for Economic Research - INFER.
    2. Yaoyao Wang & Yuanpei Kuang, 2023. "Evaluation, Regional Disparities and Driving Mechanisms of High-Quality Agricultural Development in China," Sustainability, MDPI, vol. 15(7), pages 1-20, April.
    3. Shuying Wang & Yifei Gao & Hongchang Zhou, 2022. "Research on Green Total Factor Productivity Enhancement Path from the Configurational Perspective—Based on the TOE Theoretical Framework," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    4. Xu Dong & Yang Chen & Qinqin Zhuang & Yali Yang & Xiaomeng Zhao, 2022. "Agglomeration of Productive Services, Industrial Structure Upgrading and Green Total Factor Productivity: An Empirical Analysis Based on 68 Prefectural-Level-and-Above Cities in the Yellow River Basin," IJERPH, MDPI, vol. 19(18), pages 1-19, September.
    5. Shuhui Zhang & Fuquan Li & Yuke Zhou & Ziyuan Hu & Ruixin Zhang & Xiaoyu Xiang & Yali Zhang, 2022. "Using Net Primary Productivity to Characterize the Spatio-Temporal Dynamics of Ecological Footprint for a Resource-Based City, Panzhihua in China," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    6. Zhenggen Fan & Ji Liu & Hu Yu & Hua Lu & Puwei Zhang, 2022. "Spatial-Temporal Pattern and Influencing Factors of Land Ecological Carrying Capacity in The National Pilot Zones for Ecological Conservation in China," Land, MDPI, vol. 11(12), pages 1-17, December.
    7. Luxin Yang & Yucheng Liu & Huihui Deng, 2023. "Environmental governance, local government competition and industrial green transformation: Evidence from China's sustainable development practice," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 1054-1068, April.
    8. Yifei Shi & Xinghang Ge & Xueliang Yuan & Qingsong Wang & Jon Kellett & Fangqiu Li & Kaiming Ba, 2019. "An Integrated Indicator System and Evaluation Model for Regional Sustainable Development," Sustainability, MDPI, vol. 11(7), pages 1-23, April.
    9. Xiaoxia Liang & Yi Shi & Yan Li, 2023. "Research on the Yellow River Basin Energy Structure Transformation Path under the “Double Carbon” Goal," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    10. Jingcheng Li & Menggang Li & Tianyang Wang & Xiuqin Feng, 2023. "Analysis of the Low-Carbon Transition Effect and Development Pattern of Green Credit for Prefecture-Level Cities in the Yellow River Basin," IJERPH, MDPI, vol. 20(5), pages 1-22, March.
    11. Henryk Dzwigol & Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "The Role of Environmental Regulations, Renewable Energy, and Energy Efficiency in Finding the Path to Green Economic Growth," Energies, MDPI, vol. 16(7), pages 1-18, March.
    12. Lei Jiang & Yuan Chen & Bo Zhang, 2023. "Revisiting the Impact of Environmental Regulation on Green Total Factor Productivity in China: Based on a Comprehensive Index of Environmental Regulation from a Spatiotemporal Heterogeneity Perspectiv," IJERPH, MDPI, vol. 20(2), pages 1-17, January.
    13. Gong Chen & Qi Li & Fei Peng & Hamed Karamian & Boyuan Tang, 2019. "Henan Ecological Security Evaluation Using Improved 3D Ecological Footprint Model Based on Emergy and Net Primary Productivity," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    14. Wei Qian & Yongsheng Wang, 2022. "How Do Rising Labor Costs Affect Green Total Factor Productivity? Based on the Industrial Intelligence Perspective," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    15. Mingliang Zhao & Yue Gao & Qing Liu & Wei Sun, 2022. "The Impact of Foreign Direct Investment on Urban Green Total Factor Productivity and the Mechanism Test," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
    16. Xiaoyang Xu & Yufan Xie & Emma Serwaa Obobisa & Huaping Sun, 2023. "Has the establishment of green finance reform and innovation pilot zones improved air quality? Evidence from China," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    17. Jingcheng Li & Menggang Li, 2022. "Research of Carbon Emission Reduction Potentials in the Yellow River Basin, Based on Cluster Analysis and the Logarithmic Mean Divisia Index (LMDI) Method," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    18. Siqi Yi & Yong Zhou & Qing Li, 2022. "A New Perspective for Urban Development Boundary Delineation Based on the MCR Model and CA-Markov Model," Land, MDPI, vol. 11(3), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10194-:d:1526334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.