IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p9925-d1520780.html
   My bibliography  Save this article

Drying Performance of a Combined Solar Greenhouse Dryer of Sewage Sludge

Author

Listed:
  • Fatiha Berroug

    (Laboratory of Fluid Mechanic and Energy, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
    National Center of Studies and Research on Water and Energy, Cadi Ayyad University, Marrakech 40000, Morocco)

  • Yassir Bellaziz

    (Laboratory of Fluid Mechanic and Energy, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
    National Center of Studies and Research on Water and Energy, Cadi Ayyad University, Marrakech 40000, Morocco)

  • Zakaria Tagnamas

    (Team of Solar Energy and Aromatic and Medicinal Plants, ENS, Cadi Ayyad University, Marrakech 40000, Morocco)

  • Younes Bahammou

    (Laboratory of Fluid Mechanic and Energy, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco)

  • Hamza Faraji

    (National School of Applied Sciences, Cadi Ayyad University, Marrakech 40000, Morocco)

  • El Houssayne Bougayr

    (Laboratory of Engineering & Applied Technologies, Higher School of Technology, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco)

  • Naaila Ouazzani

    (National Center of Studies and Research on Water and Energy, Cadi Ayyad University, Marrakech 40000, Morocco
    Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco)

Abstract

The solar drying of sewage sludge in greenhouses is one of the most used solutions in wastewater treatment plants (WWTPs). However, it presents challenges, particularly in terms of efficiency and drying time. In this context, the present study explores the drying performances of an innovative Combined Solar Greenhouse Dryer (CSGD) for sewage sludge. The system integrates rock bed storage (RBS), a solar air collector (SAC), and a solar greenhouse dryer (SGD). A numerical model, developed using TRNSYS software, predicts the drying kinetics of sewage sludge through hourly dynamic simulations based on the climatic conditions of Marrakesh, Morocco. Experimental validation confirmed the accuracy of the model. The results reveal that integrating the SAC with the SGD during the day and the RBS with the SGD at night significantly enhances the drying efficiency of the sewage sludge. During daylight hours, the SAC generates hot air, reaching maximum temperatures of 64 °C in January and 109 °C in July. Concurrently, the outlet air temperature of the RBS rises notably during the day, corresponding to the charging phase of the storage unit. Moreover, during the night, the RBS air temperature exceeds ambient temperatures by approximately 7–16 °C in January and 11–37 °C in July. This integration leads to a substantial reduction in drying time. The reduction in sewage sludge water content from 4 kg/kg of dry solid (20% dry solid content) to 0.24 kg/kg of dry solid (80% dry solid content) is related to a decrease in the drying time from 121 h to 79 h in cold periods and from 47 h to 27 h in warm periods. The drying process is significantly enhanced within the greenhouse, both during daylight and nocturnal periods. The CSGD system proves to be energy-efficient, offering an effective, high-performance solution for sewage sludge management, while also lowering operational costs for WWTPs. This innovative solar drying system combines a thermal storage bed and a solar collector to enhance drying efficiency, even in the absence of sunlight.

Suggested Citation

  • Fatiha Berroug & Yassir Bellaziz & Zakaria Tagnamas & Younes Bahammou & Hamza Faraji & El Houssayne Bougayr & Naaila Ouazzani, 2024. "Drying Performance of a Combined Solar Greenhouse Dryer of Sewage Sludge," Sustainability, MDPI, vol. 16(22), pages 1-20, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9925-:d:1520780
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/9925/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/9925/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Zhidong & Hou, Yichen & Liu, Mingyu & Zhang, Guoqiang & Zhang, Kai & Zhang, Dongke & Yang, Lijun & Kong, Yanqiang & Du, Xiaoze, 2022. "Thermodynamic and economic analyses of sewage sludge resource utilization systems integrating Drying, Incineration, and power generation processes," Applied Energy, Elsevier, vol. 327(C).
    2. Badaoui, Ouassila & Hanini, Salah & Djebli, Ahmed & Haddad, Brahim & Benhamou, Amina, 2019. "Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models," Renewable Energy, Elsevier, vol. 133(C), pages 144-155.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khaled A. Metwally & Awad Ali Tayoush Oraiath & I. M. Elzein & Tamer M. El-Messery & Claude Nyambe & Mohamed Metwally Mahmoud & Mohamed Anwer Abdeen & Ahmad A. Telba & Usama Khaled & Abderrahmane Bero, 2024. "The Mathematical Modeling, Diffusivity, Energy, and Enviro-Economic Analysis (MD3E) of an Automatic Solar Dryer for Drying Date Fruits," Sustainability, MDPI, vol. 16(8), pages 1-29, April.
    2. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. M. A. Tawfik & Khaled M. Oweda & M. K. Abd El-Wahab & W. E. Abd Allah, 2023. "A New Mode of a Natural Convection Solar Greenhouse Dryer for Domestic Usage: Performance Assessment for Grape Drying," Agriculture, MDPI, vol. 13(5), pages 1-27, May.
    4. Ndukwu, Macmanus Chinenye & Akpan, Godwin & Okeahialam, Azubuike N. & Umoh, John D. & Ubuoh, Emmanuel A. & Benjamine, Uchechukwu G. & Nwachukwu, Chris & Kalu, Confidence A. & Mbanasor, Jude & Wu, Hong, 2023. "A comparison of the drying kinetics, energy consumption and colour quality of drying medicinal leaves in direct-solar dryer with different colours of collector cover," Renewable Energy, Elsevier, vol. 216(C).
    5. Nikpey, Amir Hossein & Hajizadeh Aghdam, Abolfazl & Hamoud Shaltouki, Sadegh, 2024. "Dynamic simulation and thermoeconomic analysis of a novel indirect hybrid solar dryer," Renewable Energy, Elsevier, vol. 227(C).
    6. Chantasiriwan, Somchart, 2023. "The recovery of blowdown heat using steam dryer in biomass power plant," Energy, Elsevier, vol. 283(C).
    7. Abdul Wasim Noori & Mohammad Jafar Royen & Alžbeta Medveďová & Juma Haydary, 2022. "Drying of Food Waste for Potential Use as Animal Feed," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    8. Hadibi, Tarik & Mennouche, Djamel & Boubekri, Abdelghani & Chouicha, Samira & Arıcı, Müslüm & Yunfeng, Wang & Ming, Li & Fang-ling, Fan, 2023. "Drying characteristic, sustainability, and 4E (energy, exergy, and enviro-economic) analysis of dried date fruits using indirect solar-electric dryer: An experimental investigation," Renewable Energy, Elsevier, vol. 218(C).
    9. Saini, Raj Kumar & Saini, Devender Kumar & Gupta, Rajeev & Verma, Piush & Thakur, Robin & Kumar, Sushil & wassouf, Ali, 2023. "Technological development in solar dryers from 2016 to 2021-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    10. Badaoui, Ouassila & Djebli, Ahmed & Hanini, Salah, 2022. "Solar drying of apple and orange waste: Evaluation of a new thermodynamic approach, and characterization analysis," Renewable Energy, Elsevier, vol. 199(C), pages 1593-1605.
    11. Ismail, Muhammad Imran & Yunus, Nor Alafiza & Hashim, Haslenda, 2021. "Integration of solar heating systems for low-temperature heat demand in food processing industry – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    12. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2024. "A comprehensive review of hybrid solar dryers integrated with auxiliary energy and units for agricultural products," Energy, Elsevier, vol. 293(C).
    13. Froissart, M. & Ochrymiuk, T., 2023. "Novel wet combustion chamber concept CFD studies with triple water inlet," Energy, Elsevier, vol. 278(PA).
    14. Moussaoui, Haytem & Bahammou, Younes & Tagnamas, Zakaria & Kouhila, Mounir & Lamharrar, Abdelkader & Idlimam, Ali, 2021. "Application of solar drying on the apple peels using an indirect hybrid solar-electrical forced convection dryer," Renewable Energy, Elsevier, vol. 168(C), pages 131-140.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9925-:d:1520780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.