IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p9764-d1517084.html
   My bibliography  Save this article

Electrochemical Methods for Nutrient Removal in Wastewater: A Review of Advanced Electrode Materials, Processes, and Applications

Author

Listed:
  • Juwon Lee

    (Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada)

  • Giorgio Antonini

    (Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada)

  • Ahmed Al-Omari

    (Brown and Caldwell, Andover, MA 01810, USA)

  • Christopher Muller

    (Brown and Caldwell, Andover, MA 01810, USA)

  • Jithin Mathew

    (Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada)

  • Katherine Bell

    (Brown and Caldwell, Andover, MA 01810, USA)

  • Joshua M. Pearce

    (Department of Electrical & Computer Engineering, Western University, London, ON N6A 3K7, Canada)

  • Domenico Santoro

    (Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada)

Abstract

In response to the increasing global water demand and the pressing environmental challenges posed by climate change, the development of advanced wastewater treatment processes has become essential. This study introduces novel electrochemical technologies and examines the scalability of industrial-scale electrooxidation (EO) methods for wastewater treatment, focusing on simplifying processes and reducing operational costs. Focusing on the effective removal of key nutrients, specifically nitrogen and phosphorus, from wastewater, this review highlights recent advancements in electrode materials and innovative designs, such as high-performance metal oxides and carbon-based electrodes, that enhance efficiency and sustainability. Additionally, a comprehensive discussion covers a range of electrochemical methods, including electrocoagulation and electrooxidation, each evaluated for their effectiveness in nutrient removal. Unlike previous studies, this review not only examines nutrient removal efficiency, but also assesses the industrial applicability of these technologies through case studies, demonstrating their potential in municipal and industrial wastewater contexts. By advancing durable and cost-effective electrode materials, this study emphasizes the potential of electrochemical wastewater treatment technologies to address global water quality issues and promote environmental sustainability. Future research directions are identified with a focus on overcoming current limitations, such as high operational costs and electrode degradation, and positioning electrochemical treatment as a promising solution for sustainable water resource management on a larger scale.

Suggested Citation

  • Juwon Lee & Giorgio Antonini & Ahmed Al-Omari & Christopher Muller & Jithin Mathew & Katherine Bell & Joshua M. Pearce & Domenico Santoro, 2024. "Electrochemical Methods for Nutrient Removal in Wastewater: A Review of Advanced Electrode Materials, Processes, and Applications," Sustainability, MDPI, vol. 16(22), pages 1-23, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9764-:d:1517084
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/9764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/9764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Josiel Martins Costa, 2023. "Considerations on Electrochemical Technologies for Water Purification and Wastewater Treatment," IJERPH, MDPI, vol. 20(12), pages 1-3, June.
    2. Edyta Kiedrzyńska & Marcin Kiedrzyński & Maciej Zalewski, 2015. "Sustainable floodplain management for flood prevention and water quality improvement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 955-977, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander J. Miller & Mauricio E. Arias & Sergio Alvarez, 2021. "Built environment and agricultural value at risk from Hurricane Irma flooding in Florida (USA)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1327-1348, November.
    2. Lamek Nahayo & Christophe Mupenzi & Alphonse Kayiranga & Fidele Karamage & Felix Ndayisaba & Enan Muhire Nyesheja & Lanhai Li, 2017. "Early alert and community involvement: approach for disaster risk reduction in Rwanda," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 505-517, March.
    3. Meredith Hovis & Joseph Chris Hollinger & Frederick Cubbage & Theodore Shear & Barbara Doll & J. Jack Kurki-Fox & Daniel Line & Andrew Fox & Madalyn Baldwin & Travis Klondike & Michelle Lovejoy & Brya, 2021. "Natural Infrastructure Practices as Potential Flood Storage and Reduction for Farms and Rural Communities in the North Carolina Coastal Plain," Sustainability, MDPI, vol. 13(16), pages 1-25, August.
    4. Dallimer, Martin & Martin-Ortega, Julia & Rendon, Olivia & Afionis, Stavros & Bark, Rosalind & Gordon, Iain J. & Paavola, Jouni, 2020. "Taking stock of the empirical evidence on the insurance value of ecosystems," Ecological Economics, Elsevier, vol. 167(C).
    5. Antonio Santoro & Qingyi Yu & Francesco Piras & Beatrice Fiore & Alessandra Bazzurro & Mauro Agnoletti, 2022. "From Flood Control System to Agroforestry Heritage System: Past, Present and Future of the Mulberry-Dykes and Fishponds System of Huzhou City, China," Land, MDPI, vol. 11(11), pages 1-22, October.
    6. Ipsita Nandi & Prashant K. Srivastava & Kavita Shah, 2017. "Floodplain Mapping through Support Vector Machine and Optical/Infrared Images from Landsat 8 OLI/TIRS Sensors: Case Study from Varanasi," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1157-1171, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9764-:d:1517084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.