IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p9683-d1515510.html
   My bibliography  Save this article

ICT Innovation to Promote Sustainable Development Goals: Implementation of Smart Water Pipeline Monitoring System Based on Narrowband Internet of Things

Author

Listed:
  • Yuh-Ming Cheng

    (Department of Computer Science and Information Engineering, Shu-Te University, Kaohsiung City 82445, Taiwan)

  • Mong-Fong Horng

    (Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan)

  • Chih-Chao Chung

    (General Education Center, National Tainan Junior College of Nursing, Tainan City 700, Taiwan)

Abstract

This study proposes a low-cost, automatic, wide-area real-time water pipeline monitoring model based on Narrowband Internet of Things (NB-IoT) technology, aiming to solve the challenges faced in the context of global water pipeline management. This model focuses on real-time monitoring of pipeline operations to reduce water waste and improve management efficiency, directly contributing to the achievement of the sustainable development goals (SDGs). Water resource management faces several significant global challenges, including water scarcity, inefficient resource utilization, and infrastructure degradation. Traditional water pipeline monitoring systems are often manual, time-consuming, and unable to detect leaks or failures in real time, leading to significant water loss and financial costs. In response to these issues, NB-IoT technology offers a promising solution with its advantages of low power consumption, long-range communication, and cost-effectiveness. The development of an NB-IoT-based smart water pipeline monitoring system is therefore essential for enhancing the efficiency and sustainability of water resource management. Through enabling real-time monitoring and data collection, this system can address critical issues in global water management, reducing waste and supporting the sustainable development goals (SDGs). This model utilizes Low-Power Wide-Area Network (LPWAN) technology, combined with an LTE mobile network and ARM Cortex-M4 microcontroller, to achieve long-distance multi-sensor data collection and monitoring. The research results show that NB-IoT technology can effectively improve water resource management efficiency, reduce water waste, and is of great significance for the digital transformation of infrastructure and the development of smart cities. This technical solution not only supports “Goal 6: Clean Drinking Water and Sanitation” in the United Nations’ sustainable development goals (SDGs) but also promotes the realization of low-cost teaching aids related to engineering education-related information and communication technologies (ICTs). This study demonstrates the key role of ICTs in promoting sustainable development and provides a concrete practical example for smart water resource management.

Suggested Citation

  • Yuh-Ming Cheng & Mong-Fong Horng & Chih-Chao Chung, 2024. "ICT Innovation to Promote Sustainable Development Goals: Implementation of Smart Water Pipeline Monitoring System Based on Narrowband Internet of Things," Sustainability, MDPI, vol. 16(22), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9683-:d:1515510
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/9683/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/9683/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bharat S. Chaudhari & Marco Zennaro & Suresh Borkar, 2020. "LPWAN Technologies: Emerging Application Characteristics, Requirements, and Design Considerations," Future Internet, MDPI, vol. 12(3), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anjali R. Askhedkar & Bharat S. Chaudhari & Maha Abdelhaq & Raed Alsaqour & Rashid Saeed & Marco Zennaro, 2023. "LoRa Communication Using TVWS Frequencies: Range and Data Rate," Future Internet, MDPI, vol. 15(8), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:9683-:d:1515510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.